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Foreword 
 
 
The design of future reusable launch vehicles and supersonic aircraft such as the X-43 
and Hyper-X creates new challenges/exacerbates old ones in various disciplines. 
Noteworthy in structural dynamics is the design of panels which may be subjected to the 
combination of a severe acoustic excitation (emanating for example from the engine) and 
a substantial heating from aerodynamic origin. Even in the absence of thermal effects (i.e. 
with an operational thermal protection system - TPS), the acoustic excitation may induce 
a response large enough to mandate the consideration of nonlinear structural models. 
Furthermore, in the event of a malfunctioning TPS, such panels may be expected to 
buckle and the severe acoustic excitation will then induce strongly nonlinear response 
features such as snap-through from one buckled configuration to another. 
 
In fact, there are two nonlinearities to contend with: the nonlinearity of the panel 
response and the nonlinearity of the stress-displacement relationships arising from the 
von Karman strain definition, as well as the randomness of the acoustic excitation. The 
fast and reliable prediction of the panel response, i.e. displacement field, stress field, and 
fatigue life, in this extreme environment is thus a particularly challenging task which 
represents the focus of the present contract. 
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1. INTRODUCTION 

 
The focus of the present investigation was on the determination of the fatigue life of 

structures subjected to an extreme environment including in particular thermal effects, i.e. 

temperature gradients on and across the panels, and an acoustic loading. The research 

effort can broadly be decomposed into four topics: 

 

1. The development of simulation-free strategies (e.g. equivalent linearization) for the 

prediction of the probabilistic aspects of the response (displacement, stress, and 

strain fields) of the structure to the random (acoustic) and deterministic (thermal) 

excitations.  
 

2. The prediction of the fatigue life of the structure considered from the estimated 

probabilistic aspects of the response. 
 

3. The development of reduced order modeling schemes that render the above two tasks 

computationally efficient. 
 

4. The development of a code, or set thereof, that permits the fast and accurate 

estimation of the response and fatigue life of panels. 

 

The results achieved in all of these four areas during the contract period are described 

below. 

 

2.  SIMULATION-FREE PREDICTION OF THE RESPONSE 

 
The work in this area has focused on several aspects of the equivalent linearization 

technique and on the prediction of the power spectral density of the response of the 

Duffing oscillator, the prototypical equation for the panel response. In regards to the 

former topic, the effort included 
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(a) the formulation and assessment of an alternative equivalent linearization approach 

based on the modeling of the potential energy of the system as opposed to the 

approximation of the force (see Zhang et al., 1991, Elishakoff and Zhang, 1992), 

(b) the extension of the force-based equivalent linearization technique to the 

consideration of asymmetric thermal loading, i.e. situations where a thermal 

moment exists, 

and 

(c) the general formulation of the force-based equivalent linearization technique as 

applicable to a full finite element representation or a reduced order model of the 

structure. 

 

These different efforts are described in the three following sub-sections. 

 

2.1  Formulation and Assessment of the Potential Energy-Based 

Equivalent Linearization Technique 

 
2.1.1  Equivalent Linearization Strategies 

The equivalent linearization technique is, as its name suggests, a strategy for the 

approximation of a nonlinear system by a linear one. While the name generally refers to a 

specific strategy, there exists a large number of variations on the given theme, i.e. the 

equivalent linearization methods of Bruckner and Lin (1987), Iyengar (1988), Socha and 

Pawleta (1994) and Elishakoff and Colajanni (1997), Zhang et al. (1991) and Elishakoff 

and Zhang (1992), as well as the fixed mean techniques developed in the Phase I of this 

contract. Some of these approaches have been formulated to expand the applicability of 

the standard (also referred to as force-based) equivalent linearization approach. For 

example, the goal of Iyengar (1988) was to extract a higher order model (i.e. multiple 

natural frequencies) to include in the linear approximation the harmonics of the nonlinear 

response, Bruckner and Lin (1987) focused on parametrically excited systems, etc. 

 

Some of the proposed variations have also attempted to improve the accuracy of the 

estimated mean and variance of the response by modifying the standard approach. While 
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the formulation by Socha and Pawleta (1994) and Elishakoff and Colajanni (1997) did 

not seem to be an improvement, it generated a controversy in the community which was 

finally clarified by Caughey (2001). Another approach, i.e. the potential energy-based 

approach of Zhang et al. (1991) and Elishakoff and Zhang (1992), has received less 

attention, although the preliminary results it yielded are quite promising (see Muravyov 

et al., 1999). In light of the need, for fatigue life prediction, of an efficient and accurate 

estimation technique of the probabilistic features of the response, the applicability and 

reliability of this potential energy-based equivalent linearization was investigated and 

compared to its force-based counterpart. 

 

To exemplify the derivation of these two equivalent linearization techniques, consider the 

nonlinear equation of motion 

 ( ) ( )tpqfqq =+ωζ+ 02  (1) 

where ( )qf  is a nonlinear restoring force and ( )tp  is a random (white or colored) 

excitation. In the present context, the restoring force is composed of three parts, the 

bending stiffness (unstable), the membrane effects (stable), and the constant thermal 

moments term, i.e. 

 ( ) ( ) 0
32

0 1 pqqsqf −γ+−ω=  (2) 

 

The results of the Phase I efforts have shown that two specific situations must be 

considered. When the excitation level is small, the motions occur around the two buckled 

states and the equivalent linearization with an unknown, nonzero mean is adequate. As 

the sound pressure level is increased, this type of solution disappears but an accurate 

prediction of the statistics of the response can still be achieved through a combination of 

the zero mean equivalent linearization and a similar technique with a mean fixed, equal to 

each buckled state. On this basis, the following discussion will be divided into the 

unknown mean and fixed mean equivalent linearization approaches with force-based and 

potential energy-based formulations. 
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2.1.2  Unknown Mean Equivalent Linearization Strategies 

The force-based equivalent linearization technique seeks the best approximation of ( )qf  

by a linear expression of the form eqeq pqk −  through the minimization of the error  

 ( )[ ]{ }2
mod eqeq pqkqfEE +−=  (3) 

where [ ]•E  denotes the operation of mathematical expectation. The differentiation of 

modE  with respect to the unknown parameters eqk  and eqp  yields the two conditions 

 [ ] [ ] ( )[ ]qqfEpqEkqE eqeq =−2  (4) 

and 

 [ ] ( )[ ]qfEpkqE eqeq =−  (5) 

from which one obtains 

 
( ) ( )[ ]

2
q

q

eq

qqfE
k

σ

µ−
=  (6) 

and 

 
( ) ( )[ ] ( )[ ]

2

2

q

qqq

eq

qfEqqfE
p

σ

σ−µ−µ
= . (7) 

In the above equations, qµ  and 2
qσ  denote the mean and variance of q defined as 

 [ ]qEq =µ  (8) 

and 

 ( )[ ]22
qq qE µ−=σ . (9) 

 

It should be noted that Eq. (6) and (7) could have been obtained more directly by using, 

instead of eqeq pqk − , the approximation ( ) 1aqk qeq +µ−  which naturally involves the 
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central moments of q, i.e. [ ] 0=µ− qqE and the variance, Eq. (9).  These two 

approximations are of course equivalent with 1akp qeqeq −µ=  where 

 ( )[ ]qfEa =1 . (10) 

 

As often recognized, the equivalent linearization technique is really composed of two 

separate approximation steps: the first one, described above, is the modeling of the 

nonlinear restoring force by a linear expression. The second stage is the actual evaluation 

of the coefficients eqk  and eqp . This effort requires the moments qµ , 2
qσ , ( )[ ]qfE , 

and ( ) ( )[ ]qqqfE µ− , see Eq. (6), (7), and (10), but these quantities are in general 

unknown since the probabilistic description of the process q(t) is not available. The 

standard resolution of this difficulty is the adoption of a specific distribution for the 

response q(t); a Gaussian approximation being most often adopted as it is the correct 

description of the response of the approximate (linear) system 

 ( )tppqkqq eqeq +=+ωζ+ 02 .      (11) 

The Gaussian modeling of the response process q(t) permits the evaluation of all required 

moments (e.g, ( )[ ]qfE  and ( ) ( )[ ]qqqfE µ− ) in terms of the mean qµ  and variance 

2
qσ . Additional properties of Gaussian random variables can also be used to further 

simplify the determination of the coefficients eqk  and eqp  of the equivalent linear 

model. For example, it can be shown (see Lutes and Sarkani, 1997) for such random 

variables that 

 ( ) ( )[ ] ( )
⎥
⎦

⎤
⎢
⎣

⎡
σ=µ−

dq
qdgEqqgE qq

2       (12) 

for any functions ( )qg , so that Eq. (6) can be rewritten as 
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  ( )
⎥
⎦

⎤
⎢
⎣

⎡
=

dq
qdfEkeq . (13) 

 

Once the coefficients eqk  and eqp  have been expressed in terms of qµ  and 2
qσ , a set of 

nonlinear equations for these moments can be derived by noting that the stationary 

response of the equivalent linear system, Eq. (11), is 

 
eq

eq
q k

p
=µ   (14) 

and, for a white noise excitation process ( )tp , 

 
eq

pp
q k

S

0

2
2 ωζ

π
=σ       (15) 

so that 

 
2

02 q

pp
eq

S
k

σωζ

π
=   (16) 

and 

 
2

02 q

qpp
eq

S
p

σωζ

µπ
= .      (17) 

 

The above process was demonstrated in detail in connection with the restoring force of 

Eq. (2) in the final report of the Phase I effort and thus will not be repeated here. 

 

Zhang et al. (1991) and Elishakoff and Zhang (1992) suggested an alternative linear 

equivalent linearization technique that does not approximate the restoring force but rather 

the corresponding potential energy. Why the focus on the potential energy? Interestingly, 

it has been shown (Caughey, 1965, see Lutes and Sarkani, 1997) that the exact stationary 

probability density function of the response q(t) can be written as 

 ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

π
ωζ

−= qV
S

Bqp
pp

tq
0

)(
2

exp)(       (18) 
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where B is a normalization constant, i.e. such that the total probability is 1, and V(q) is 

the potential energy associated with f(q), that is 

 ( ) ( )∫= dqqfqV . (19) 

In this light, an approximation of the potential energy can then be viewed as a direct 

approximation of the probability density function of the response. 

 

Following the standard (force-based) equivalent linearization strategy, it was proposed to 

model the potential V(q) by the quadratic potential of a linear restoring force. A 

surprisingly important question that arises is the presence of a constant in the definition 

of the potential, i.e. assuming that V(0) = 0, should one try to approximate V(q) by an 

expression of the form  

 ( ) eqeqeq VqpqkqV +−≈ 2
2
1       (20) 

or as 

 ( ) qpqkqV eqeq −≈ 2
2
1 .      (21) 

Practically speaking, there is no difference in the final equation of motion which are 

independent of a shift of the potential function. Nevertheless, as will be seen below, the 

approximation strategies based on Eq. (20) and (21) are different. 

 

The modeling by Eq. (20) will be considered first. Following the discussion of the 

previous section, the alternate form 

 ( ) ( ) ( ) 01
2

2 aqaqaqV qq +µ−+µ−≈  (22) 

will be used instead. A direct comparison Eq. (20) and (22) yields the correspondence 

 22 akeq =  (23) 

 1akp qeqeq −µ=  (24) 

and 

 2
0 2

1
qqeqeq paV µ−µ+= .      (25) 
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The coefficients 0a , 1a , and 2a  will be selected to minimize the modeling error 

 ( ) ( ) ( )[ ]
⎭
⎬
⎫

⎩
⎨
⎧ −µ−−µ−−=

2
01

2
2mod aqaqaqVEE qq

pot . (26) 

Differentiating potEmod  with respect to 0a , 1a , and 2a  yields the equations 

 ( )[ ] ( )[ ] ( )[ ] ( ) ( )[ ]22
0

3
1

4
2 qqqq qqVEqEaqEaqEa µ−=µ−+µ−+µ−  (27) 

 ( )[ ] ( )[ ] ( )[ ] ( ) ( )[ ]qqqq qqVEqEaqEaqEa µ−=µ−+µ−+µ− 0
2

1
3

2  (28) 

 ( )[ ] ( )[ ] ( )[ ]qVEaqEaqEa qq =+µ−+µ− 01
2

2 .  (29) 

Simplifications of the above equations result by noting that [ ] 0=µ− qqE and by 

assuming that ( )[ ] 03 =µ− qqE , i.e. that the distribution of the response selected for the 

evaluation of the moments exhibits no skewness (this is in particular the case for the 

Gaussian distribution corresponding to the response of the linearized equation of motion). 

Specifically, it is found that 

 
( ) ( )[ ]

21
q

qqqVE
a

σ

µ−
=   (30) 

and the coupled equations 

 ( )[ ] ( )[ ] ( ) ( )[ ]22
0

4
2 qqq qqVEqEaqEa µ−=µ−+µ−   (31) 

 ( )[ ] ( )[ ]qVEaqEa q =+µ− 0
2

2 .  (32) 

Combining Eq. (31) and (32) yields 

 
( ) ( )[ ] ( )[ ]

( )[ ] 44

22

2

qq

qq

qE

qVEqqVE
a

σ−µ−

σ−µ−
= .  (33) 
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This equation will be further specialized to a Gaussian distribution of the response q, e.g. 

the one associated with the linearized equation of motion. In this case, 

( )[ ] 44 3 qqqE σ=µ− and Eq. (33) becomes 

 
( ) ( )[ ] ( )[ ]

4

22

2
2 q

qq qVEqqVE
a

σ

σ−µ−
= .  (34) 

A first application of Eq. (12) to the above relation with ( ) ( ) ( )qqqVqg µ−=  yields 

 
( ) ( )[ ]

( )[ ] ( )[ ] ( )
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎦

⎤
⎢
⎣

⎡
µ−

σ
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ µ−

σ
= q

q

q

q
q

dq
qVdEqVE

dq

qqVd
Ea

222
2

1

2

1 . (35) 

A second application of Eq. (12) with ( ) ( ) dqqdVqg /=  yields 

 ( )[ ]
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

2

2
2 2

1

dq

qVdEa . (36) 

Proceedings similarly with Eq. (30) and g(q) = V(q) leads to 

 ( )
⎥
⎦

⎤
⎢
⎣

⎡
=

dq
qdVEa1 . (37) 

Noting that ( ) ( )qf
dq

qdV
= , it is seen that Eq. (36) and (37) in fact reduce to Eq. (10) and 

(13) so that this version of the potential energy-based equivalent linearization is in fact 

identical to the standard, force-based approach. 

 

What about the modeling of Eq. (21), i.e. if we require both potentials to vanish at the 

undeformed position? Since a direct rewriting of Eq. (21) in the form of Eq. (22) is 

possible only with the imposition of constraints on the coefficients 0a , 1a , and 2a , it is 

actually easier to proceed with the original form of Eq. (21). Then, the coefficients eqk  

and eqp  are the selected to minimize the modeling error 



 

10 

 ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −−=

2
2

mod 2
1 qpqkqVEE eqeq

pot . (38) 

That is, such that 

 [ ] [ ] ( )[ ]234 qqVEqEpqEk eqeq =+  (39) 

 [ ] [ ] ( )[ ]qqVEqEpqEk eqeq =+ 23 . (40) 

Combining these relations with Eq. (16) and (17) and expressing all moments in terms of 

the mean qµ  and variance 2
qσ  using for example the Gaussian model of the response of 

the linearized equation of motion yields a system of 2 nonlinear equations in the two 

unknowns qµ  and 2
qσ . In the present case, i.e. with f(q) defined by Eq. (2) and  

 ( ) ( ) qpqqsqV 0
422

0 4
1

2
1

−
γ

+−ω= , (41) 

it is found after a series of algebraic manipulations that Eq. (39) and (40) take the form 

 

( ) ( ) ( )

( ) 0
2

3
2

1
2
11015

4

22
02

0

32
2

0

2
0

5324

=µ+σ
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−

σωζ

µπ
+

µ+µσ
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

σωζ

π
−−ω+µ+µσ+µσ

γ

qq
q

qpp

qqq
q

pp
qqqqq

p
S

S
s

  (42) 

and 

( ) ( ) ( )

( ) 03
2

63
2

1
2
1154515

4

32
02

0

4224
2

0

2
0

642246

=µ+µσ
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−

σωζ

µπ
+

µ+µσ+σ
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

σωζ

π
−−ω+µ+µσ+µσ+σ

γ

qqq
q

qpp

qqqq
q

pp
qqqqqq

p
S

S
s

  (43) 

 

The following linear combination of Eq. (42) and (43) 
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( ) ( ) ( ) 0
2

2
2

1
2
363

4
5

02
0

22
2

0

2
0

4224 =µ
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−

σωζ

µπ
+µ+σ

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

σωζ

π
−−ω+µ+µσ+σ

γ
q

q

qpp
qq

q

pp
qqqq p

SS
s

  (44) 

 

can also be used as a somewhat simpler alternative to Eq. (43). 

 

The assessment of this potential-based equivalent linearization was achieved in the 

absence of thermal moment terms, i.e. with 00 =p . Accordingly, as discussed in the 

Phase I report, there exist typically two linear equivalent systems to be considered: the 

one corresponding to motions around the buckled states (low SPL), i.e. with 0≠µq , and 

the one modeling the frequent snap-through motions (high SPL), i.e. with 0=µq . 

 

The determination of the nonzero mean qµ  and the variance 2
qσ  can be accomplished 

directly from Eq. (41) and (44) but a small additional simplification of these equations 

can be achieved. Indeed, proceeding with a linear combination of these relations leads to 

 ( ) ( )
0

22
0

422
2

15
ωζ

π
=µ−ω+µ+µσγ

pp
qqqq

S
s  (45) 

which represents a quadratic equation for 2
qµ  in terms of 2

qσ  and so does Eq.(44). Then, 

eliminating the terms in 4
qµ  from Eq. (44) and (45) yields 

 

( )

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
σγ+σ−ω+

ωζ

π

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
σγ−σ−ω−

ωζ

π
σ

=µ
422

0
0

422
0

0

2

2

51

1516
2

qq
pp

qq
pp

q

q

s
S

s
S

. (46) 

Finally, inserting this expression for 2
qµ  in Eq. (44) leads to a sixth order equation for 

2
qσ . The evaluation of the nonzero mean qµ  and the variance 2

qσ  proceeds from the 

solution of Eq. (44) and (45). 

 



 

12 

To characterize the response at high sound pressure levels when snap-throughs are 

frequent, the zero mean value solution is more appropriate. The corresponding variance 

can be determined from Eq. (44), i.e. 

 ( ) 0
4

3
1

2
3

4
15

0

22
0

4 =
ωζ

π
−σ−ω+σγ

pp
qq

S
s  (47) 

that is 

 ( ) ( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−ω−

ωζ

π
γ+−ω

γ
=σ s

S
s pp

q 151
5
1 2

0
0

24
0

2 . (48) 

It is interesting to compare this result with its counterpart obtained in connection with the 

force-based equivalent linearization technique. In the Phase I report, it was found that the 

variance of the zero mean response was expressed as 

 ( ) ( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−ω−

ωζ

π
γ+−ω

γ
=σ s

S
s pp

q 161
6
1 2

0
0

24
0

2  (49) 

so that the only difference between the two predictive expressions for the variance is the 

factor 6 γ in Eq. (49) (force-based approach) vs. 5 γ in Eq. (48) (potential-based 

approach). This difference is consistent with the results of Muravyov et al. (1999) where 

it was noted that the expressions obtained for the equivalent stiffness in the two methods 

where identical except for a transformation 3 γ →  2.5 γ. 

 

To assess how well the potential energy-based equivalent linearization performs in 

relation to its force-based counterpart, the titanium panel of Phase I was reconsidered 

here with s = 1.8 and values of the sound pressure level ranging in the domain 94-134 dB. 

A large discrepancy between the two approaches was observed in the low SPL range: 

while the force-based method yielded a variance similar to the Monte Carlo simulations, 

the above potential energy-based technique overestimated this moment by a factor of 4. 

This difference of behavior can be predicted from Eq. (44). Indeed, in the limit of 

0→ppS , Eq. (44) yields 
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( ) 02

0

2
21

2
ωζ

π

−ω
−≈σ pp

q
S

s
 (50) 

while a similar analysis of the force-based equivalent linearization leads to the 

perturbation solution 

 
( ) 02

0

2
212

1
ωζ

π

−ω
−≈σ pp

q
S

s
. (51) 

 

The poor accuracy of the above potential energy-based equivalent linearization approach 

at low sound pressure level is somewhat mitigated by a slight improvement in accuracy 

of the variance estimate (Eq. (48)) at high excitation levels, see Table 1. Note however 

that the improvement is small in the infrequent-to-frequent snap-through transition zone, 

i.e. around SPL = 124 dB, where the error of the force-based equivalent linearization 

approach is by far the largest. The failure of both force- and potential energy-based 

approaches in this range of sound pressure levels should not be too surprising: it is 

symptomatic of the strongly nonlinear features of the corresponding response which 

cannot accurately be modeled by any linearized model. 

 

 SPL = 124 dB SPL = 134 dB 

Monte Carlo Simulations 0.4137 0.5618 

Variable Mean Formulations   

Force-Based E.L.; Eq. (49) 0.3308 0.5012 

Potential Energy-Based E.L.; Eq. (48) 0.3534 0.5283 

Fixed Mean Formulations   

Force-Based E.L.;  see Phase I report 0.4794 0.5996 

Potential Energy-Based E.L.; Eq. (59) 0.5269 0.6068 

 

Table 1. Displacement variance estimates obtained by Monte Carlo simulations and the 

force- and potential energy-based equivalent linearization approaches, s = 1.8, SPL = 124 

dB and 134 dB, one mode model, Eq. (1)-(2), isotropic panel of Phase I. 
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2.1.3  Fixed Mean Equivalent Linearization Strategies 

Equivalent linearization strategies with fixed mean values, iq Q=µ , can also be 

developed as above but Eq. (14) is imposed as an a-priori constraint on the minimization 

of modE  and potEmod . Accordingly, the three following equivalent linearization strategies 

can be formulated: 

force-based equivalent linearization: minimize, with respect to eqk , the modeling error 

 ( ) ( )[ ]{ }2
mod ieq QqkqfEE −−=  (52) 

potential energy-based equivalent linearization with unspecified zero level: minimize, 

with respect to eqka
2
1

2 =  and 0a , the modeling error 

 ( ) ( )[ ]
⎭
⎬
⎫

⎩
⎨
⎧ −−−=

2
0

2
2mod aQqaqVEE i

pot  (53) 

potential energy-based equivalent linearization with specified zero level: minimize, with 

respect to eqk , the modeling error 

 ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −−=

2
2

mod 2
1 qQkqkqVEE ieqeq

pot . (54) 

 

Consider first the force-based equivalent linearization method. Differentiating Eq. (52) 

with respect to eqk  leads to 

 
( ) ( )[ ] ( )

⎥
⎦

⎤
⎢
⎣

⎡
=

σ

−
=

dq
qdfE

QqqfE
k

q

i

eq 2
 (55) 

where the last equality results from the application of Eq. (12) with g(q) = f(q). By 

comparison with the results from the previous section, it is seen that the specification of 

the mean has not changed the definition of the equivalent stiffness, compare Eq. (13) and 

(55). 
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Proceeding next with the potential energy-based equivalent linearization of Eq. (53), it 

should be noted that this minimization problem is identical to the one of Eq. (26) except 

for the constraint 01 =a . The minimization of potEmod  with respect to eqka
2
1

2 =  and 0a , 

thus yields Eq. (27) and (29) in which the coefficients 1a  should be set to zero. However, 

the terms involving this parameter do disappear from these two equations, see Eq. (31) 

and (32), so that the definition of 2a  (see Eq. (36)) and 0a  for the fixed mean case are 

the same as those presented for the variable mean. 

 

From the above findings and the results of the previous section it can then be argued that 

the force-based and potential energy-based (unspecified level) equivalent linearization 

strategies are identical to each other in both variable and fixed mean cases. 

 

In this light, it remains then to assess the last approach, i.e. the minimization of Eq. (54). 

Differentiating potEmod , Eq. (54), with respect to eqk yields 

 
( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

=
2

2

2

2
1

2
1

qQqE

qQqqVE
k

i

i

eq . (56) 

For the potential energy of Eq. (41), one finds 

( ) ( )[ ] ( )[ ] ( )[ ]
4224

2
0

24222
0

23

222
2

21

iqiq

iii
eq

QQ

qQqqEpqQqqEqQqqEs
k

+σ−σ

−−−
γ

+−−ω
= (57) 

Evaluating the various expected values in terms of the mean iQ  and variance 2
qσ  and 

using Eq. (15), it is found that 

 

( ) ( ) ( )
( ) ( )4224

2
0

32
0

642246442
0

23
2

2

5155
2

31

iqiq
q

pp
iiq

iiqiqqiq

QQ
S

QQp

QQQQs

+σ−σ
σωζ

π
=−σ−

−σ−σ+σ
γ

+−σ−ω

. (58) 
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Finally, regrouping terms of similar power in 2
qσ  yields the fourth order equation 

 

( )

( ) 0
2

21
2

2

3
2

2
5

13
2

15
2

5

4

0

22

0

3
0

42
0

6

4

0
0

462
0

28

=
ωζ

π
−σ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

ωζ

π
−−−ω+

γ
−

σ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

ωζ

π
++

γ
−σ⎥⎦

⎤
⎢⎣
⎡ −ω+

γ
+σ

γ

i
pp

qi
pp

iii

q
pp

iiqiq

Q
S

Q
S

QpQsQ

S
QpQsQ

. (59) 

 

The assessment of the accuracy of this procedure has first revealed the same deficiency as 

its variable mean counterpart, i.e. an overestimation of the variance in the low SPL range 

by a factor of 4 with respect to Monte Carlo simulations results. This behavior is 

predictable from Eq. (59) which, in the limit 0→ppS , yields 

 
( ) 02

0

2
21

2
ωζ

π

−ω
−≈σ pp

q
S

s
 (60) 

as already obtained in Eq. (50). 

 

In the high SPL range, it is seen from Table 1 that the fixed mean potential energy-based 

equivalent linearization method with specified zero level yields an even larger 

overprediction of the variance as compared to the corresponding force-based approach. 

 

Combining the observations obtained at both low and high sound pressure levels, it is then 

concluded that the fixed mean potential energy-based equivalent linearization method with 

specified zero level does not appear to have any accuracy advantage, at the contrary, over 

the similar force-based technique. 

 

2.1.4  Potential Energy-Based Equivalent Linearization Strategies - Summary 

The results of the previous sections have demonstrated that there is not a single potential 

energy-based equivalent linearization technique but rather a class of such methods which 

differ from each other by the treatment of the constant in the potentials. Quite surprisingly, 

different choices imply quite different linearized systems although that constant does not 

per say enter the linearized equation of motion. 
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It was demonstrated that the potential energy-based approach in which the constant in the 

potential is part of the minimization problem and is selected to achieve the minimum of 

the modeling error is identical to the standard force-based technique. 

 

A different approach was also formulated in which the constant is selected as to yield a 

zero potential for the undeformed panel. The results of this technique, with both unknown 

(section 1.1.1) and fixed mean (section 1.1.2), were not satisfactory in the low sound 

pressure level range as the variance of the motions around the buckled state predicted by 

this equivalent linearization formulation was 4 times too large. 

 

At high sound pressure levels, however, the corresponding approximation of the variance 

was found to match slightly better the simulation results than the estimate obtained by the 

force-based equivalent linearization when considering the variable mean formulation. At 

the contrary, the fixed mean potential energy-based approach performed significantly 

worse than its force-based counterpart. 

 

It is concluded from this entire set of observations that the potential energy-based 

formulation does not appear to provide any significant improvement over the force-based 

strategy and can, in fact, yield substantially worse results. On this basis, the force-based 

equivalent linearization technique will be retained, until further notice, as the estimation 

technique of the mean and variance of the system displacements. 

 

2.2 Assessment of Force-Based Equivalent Linearization Strategies in 

the Presence of Thermal Moments 

 
The application of the force-based equivalent linearization strategy to the acoustic 

response of thermally buckled panel has been presented in detail in the Phase I report. 

However, the assessment of this approach had been limited to cases in which no thermal 

moment was present, i.e. with 00 =p  in Eq. (2). To demonstrate the general 
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applicability of the equivalent linearization technique, it was necessary to also investigate 

cases with thermal moments, i.e. with 00 ≠p  in Eq. (2). In this connection, note that the 

term 0p  creates an asymmetry in the problem so that the motions around the two 

buckled states cannot be considered as identical to each other. In fact, the presence of two 

buckled states is no longer guaranteed! The corresponding positions iQ  satisfy the 

condition ( ) 0=iQf  or 

 ( ) 0
32

0 1 pQQs ii =γ+−ω  (61) 

which yields either one or three real roots. A single real root is obtained for 0p  outside 

of the domain [ ]LL pp ,−  where 

 
( )
γ

−ω−
=

27
14 36

0 s
pL . (62) 

In such cases, the bimodal character of the response probability density function can be 

expected to be lost. 

 

The lack of symmetry of the response implies the need to revisit the combination of 

estimates taking place at low SPL in the equivalent linearization technique #1 (variable 

mean) and for all excitation levels in the equivalent linearization technique #2 (mean 

fixed to the buckled states). Specifically, the conditional arguments developed in the 

Phase I report still hold, i.e.  

 [ ]
22 21 qqq qqqE µ+µ==µ  (63) 

and 

 [ ] ⎟
⎠
⎞⎜

⎝
⎛ µ+σ+⎟

⎠
⎞⎜

⎝
⎛ µ+σ= 22

2
22

1
2

2211 qqqq qqqE  (64) 

 ( ) ( ) ( )221
22

2
22

1
2

212211
qqqqqqq qqqq µ+µ−µ+σ+µ+σ=σ  (65) 

where 
1qµ  and 

1qσ (resp. 
2qµ  and 

2qσ ) are the mean and variance of q given that the 

panel responds around the top (resp. bottom) buckling position. Further, 1q  and 2q  

denote the probabilities that the response exhibits motions around the top and bottom 
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bucked states, respectively, and 21 qq ≠  for 00 ≠p . The evaluation of these 

probabilities requires a phenomenological approximation of the response.  Specifically, a 

one-step Markov chain model will be assumed here in which the probability of the 

response exiting the domains iQq ≈  is given by the transition (snap-throughs) 

probabilities 

 [ ]2112 Prob QqQqp ≈→≈=  (66) 

and 

 [ ]1221 Prob QqQqp ≈→≈=  (67) 

Once a transition (snap-through) has had an opportunity to happen, the probability for the 

response to be in the neighborhood of the buckling state 1Q  (resp. 2Q ) has become 

For 1Q : 212121 )1( pqpq +−  (68) 

For 2Q : 121212 )1( pqpq +−  (69) 

Since the response process is stationary, these two probabilities must still equal 1q  and 

2q  respectively so that 

 1212121 )1( qpqpq =+−  (70) 

 121 =+ qq  (71) 

or 

 
2112

21
1 pp

p
q

+
=   and 

2112

12
2 pp

p
q

+
=  (72) 

 

The evaluation of 12p  and 21p  in terms of 
1qµ , 

1qσ , 
2qµ , and 

2qσ  is now required to 

complete the process.  It can be argued (see Phase I report for a related discussion) that 

these probabilities are associated with the exit from the potential wells of the buckled 

states so that 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

σ

µ−
−=

2

2
1

12

1

1

2

)(
exp

q

qR
p  (73) 
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⎥
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⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

σ

µ−
−=

2

2
2

21

2

2

2

)(
exp

q

qR
p  (74) 

where 11 QR >  and 22 QR <  are the values of q at which the potential energy equals that 

of the unstable third equilibrium position 3Q , i.e. 

 )Q(V)R(V i 3=       i = 1,2  (75) 

Equations (63), (65), (72)-(75) are applicable to both equivalent linearization techniques 

as long as two mean values 
1qµ , 

2qµ  are obtained. 

 

In the absence of experimental data, the assessment of the equivalent linearization 

technique with 00 ≠p  was limited to the analysis of the composite panel of Phase I with 

Lp.p 8500 = .  Many of the computational issues discussed in connection with 00 =p  

were again encountered, but their resolution was generally less obvious.  In particular, the 

discrimination of the bona fide mean values qµ for the equivalent linearization #1 from 

the spurious (non-physical) ones was more challenging. These values are the solutions of 

(see Phase I report for derivation)  

 ( ) ( ) 01
2

3122
2
0

2
00

2

0

3
0

42
0

62 =−µ−ω+µ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

ωζ

π
γ+µγ−µ−ωγ+µγ psp

S
ps qq

pp
qqq . 

  (76) 

It was found that the number of real roots for 00 ≠p  did not decrease from 5 to 1 as seen 

for 00 =p  but rather from 4 down to 2 at the sound pressure level of 112dB.  Further, 

one of these two mean values yielded a fictitious negative variance and thus had to be 

eliminated.  The remaining value of qµ  did not seem to capture the physics very well as 

the time histories of the displacement for SPL ≥ 112dB still appeared to exhibit a bimodal 

character.  This observation was reflected by a rather poor matching between estimated 

and true values of the mean and standard deviation of the response.  According, it was 

concluded that a second solution still had to be used for SPL ≥ 112dB.  This finding did 
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seem to conflict with the case 00 =p  for which only 0=µq  is used at large SPL for the 

equivalent linearization approach #1.  However, it should be restated that this mean value 

is in effect a double root of Eq. (76) so that two (identical for 00 =p ) mean values were 

in fact used.  Which other mean value estimate should then be considered? 

 

To address this issue, the equivalent linarization technique #2 was revisited and it was 

noted that the mean values it relies upon (i.e. 1Q  and 2Q ) do in fact correspond to the 

mean values estimated by the equivalent linearization technique #1 in the limit 

∞−→SPL .  On this basis, it was decided to use for the equivalent linearization method 

#1 with 00 ≠p  and large SPL, a second mean value 
2qµ  that equals its value for the 

critical SPL (112dB here) at which the number of roots decreases from 4 to 2.  Thus, 
2qµ  

stays constant for SPL ≥ 112dB and its associated variance can be evaluated as in 

equivalent linearization #2 with iQ  replaced by 
2qµ . 

 

To estimate the critical value of the sound pressure level, note that the disappearance of 

real, nonzero mean values of Eq. (76) has been observed, for both 00 =p  and 00 ≠p , to 

be as follows: as the SPL increases, two real roots approach each other and split into a 

complex conjugate pair right after becoming a double root.  Accordingly, the critical 

value of the sound pressure level is such that a double root exists for the equivalent 

linearization mean.  This solution then satisfies not only Eq. (76) but also its partial 

derivative with respect to 
1qµ , i.e. 

 ( ) ( ) 01
2

631812 2
00

0

2
0

32
0

52 =−ω+µ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

ωζ

π
γ+µγ−µ−ωγ+µγ sp

S
ps q

pp
qqq . (77) 

Eliminating ppS  from Eq. (76) and (77) yields 

 ( ) ( ) 021148 2
0

2
00

3
0

42
0

62 =+µ−ω−µγ−µ−ωγ+µγ pspps qqqq . (78) 
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Then, the appropriate 
2qµ  for large SPL is the real solution of Eq. (78) that gives 

identical values of ppS  as computed from Eq. (76) and Eq. (77). 

 

For clarity, the above procedure was named equivalent linearization technique #3 and can 

be summarized as follows: for given values of 0p  and the sound pressure level SPL, the 

roots of Eq. (76) are obtained and their corresponding variance estimated as in the Phase I 

report. The values of 
1qµ  and 

2qµ  are then obtained as the roots closest to 1Q  and 2Q  

respectively, that yield positive values of 2
1qσ  and 2

2qσ .  If only one such solution is 

found, an alternate 
2qµ  (or 

1qµ ) is obtained from Eq. (78).  As a check, the selected 

value of the sound pressure level should exceed the value obtained from either Eq. (76) or 

(77) for that value of qµ .  Finally, the values of 
1qµ , 

2qµ , 
1qσ , and 

2qσ  are used to 

compute qµ  and 2
qσ  according to Eq. (63), (65), (72)-(75). 

 

The results of this complicated, but physical, effort are shown in Fig. 1 and 2.  In a fairly 

close parallel to the case 00 =p , it is found that equivalent linearization #3 is very 

accurate for low SPL but that its accuracy decreases (especially for the mean value) past 

the critical value (SPL = 112dB) even with the addition of the second root 
2qµ .   
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Figure 1. Standard Deviation of the Response as Function of the Sound Pressure Level 
Obtained by Simulation and by the Equivalent Linearization Strategies #2 and #3 and their 

Average for s=1.8 and Lp.p 8500 = , Simply-Supported Composite Plate. 
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Figure 2.  Mean Value of the Response as Function of the Sound Pressure Level  

Obtained by Simulation and by the Equivalent Linearization Strategies #2 and #3 and 
their Average for s=1.8 and Lp.p 8500 = , Simply-Supported Composite Plate. 

 

Equivalent linearization #2 exhibits similar characteristics but the average of the 

estimates of  the equivalent linearization techniques #2 and #3 yields very good 

approximations of both mean value and standard deviation for sound pressure levels 

exceeding the critical value (SPL=112dB here). 
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2.3  Force-Based Equivalent Linearization - General Formulation 
 

Given the successes of the force-based equivalent linearization technique, see Phase I 

report and the current results (i.e. Fig. 1 and 2), and the unclear benefits of its potential-

energy based alternative, it is currently planned to proceed with the force-based approach 

in the present Phase II efforts. Accordingly, it is necessary to formulate the corresponding 

variable and fixed mean equivalent linearization techniques. To this end, let the N 

nonlinear equations of motion of the system be expressed as 

 ( )tFFKwCwM NL +=++ 0  (79) 

where w is the displacement vector (in-plane and out-of-plane components) and M and C 

denote the constant NN ×  mass and damping matrices. Further, NLK  is the vector of 

nonlinear restoring forces the elements of which can be expressed as 

 ( ) p
N

plj
jliljp

N

lj
jlilj

N

j
jijiNL wwwKwwKwKK ∑∑∑

===
++=

1,,

)3(

1,

)2(

1

)1( . (80) 

Finally, 0F  and ( )tF  denote the constant (e.g. thermal moment effects) and zero mean 

random (e.g. acoustic excitation) forces acting on the system. 

 

It is desired to replace the set of nonlinear differential equations of Eq. (79)-(80) by 

linearized ones of the form 

 ( )tFFwKwCwM eqeq +=++  (81) 

where eqK  and eqF  are the NN ×  equivalent stiffness matrix and N-component 

equivalent constant force vector, respectively. In the present force-based equivalent 

linearization strategy, this matrix and vector will be determined by requiring the 

minimization of the modeling error 

 ⎥⎦
⎤

⎢⎣
⎡ +−−=

2
0mod eqeqNL FwKFKEE  (82) 

where xxx T=2  is the squared norm of an arbitrary vector x with the superscript T 

denoting the operation of matrix transposition. 
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In the equivalent linearization technique #1, the matrix eqK  and the vector eqF  are 

independently selected to minimize modE , Eq. (82). The result of this minimization is 

(see Eq. (10) and (13) and Lutes and Sarkani, 1997) 

 ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
=

j

iNL
ijeq w

K
EK ,  (83) 

and 

 [ ] [ ]wEKKEFF eqNLeq +−= 0 . (84) 

Consistently with the single mode effort, the expected values of the displacement vector 

will be determined by using the response of the linearized system, i.e. under the 

assumption of a Gaussian stationary process. Then, combining Eq. (80), (83), and (84), it 

is found that 

 ( ) [ ] [ ]( )∑∑
==

µµ+σ+++µ++=
N

pl
pllpilpjijlpiljp

N

l
lijliljijijeq KKKKKKK

1,

)3()3()3(

1

)2()2()1( (85) 

and 

 

( ) ( ) ( ) ( )

( )∑

∑∑

=

==

µµµ+σµ+σµ+σµ−

µµ+σ−µ⎥⎦
⎤

⎢⎣
⎡ −+=

N

plj
jlplpjjplljpiljp

N

lj
jlljilj

N

j
jijijeqiieq

K

KKKFF

1,,

)3(

1,

)2(

1

)1(
0

. (86) 

where [ ]ll wE=µ  and ( ) ( )[ ]jjlllj wwE µ−µ−=σ are the elements of the mean 

vector and covariance matrix of the response of the linearized system, Eq. (81). 

 

The equivalent linearization technique #2 rests on the assumption that the mean vector µ 

is fixed, e.g. equal to the buckled states buckw  for which 0FK NL = . Then, the vector 

eqF  can no longer be treated as an independent variable in the minimization of Eq. (82). 

Rather, it is needed to enforce the constraint 

 µ= eqeq KF  (87) 

which is most conveniently accomplished by rewriting Eq. (82) as 
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 ( ) ⎥⎦
⎤

⎢⎣
⎡ µ−−−=

2
0mod wKFKEE eqNL . (88) 

The minimization of modE  with respect to the elements of the matrix eqK  yields again 

Eq. (83) so that Eq. (85) also applies in equivalent linearization #2 but with  µ specified. 

 

To complete the formulation of the equivalent linearization techniques, it remains to 

evaluate the statistics of the response of the linear system, Eq. (81). Clearly, the mean 

value is obtained by solving Eq. (87) for both equivalent linearization schemes. To 

estimate the covariance matrix 

 ( ) ( )[ ]TwwE µ−µ−=σ , (89) 

it will be assumed that the random force vector can be represented as the output to white 

noise input ( S ) of the auxiliary system 

 SGHG =+  (90) 

where the vector G  can be partitioned as [ ]TTT EFG = with E  a vector of internal 

states. This representation covers a very broad class of Gaussian vector processes (see 

Wiener and Masani 1957, 1958, in the discrete case) as the dimension of G , Gn , tends 

to infinity. For a finite value of Gn , the matrix H can be selected so that the 

corresponding spectral matrix of the forces ( )ωFFS  obtained as 

 ( ) [ ] [ ] TT
nnFF IIiHSIiHIS

GG
ˆˆ 0 ω−ω+=ω  (91) 

 matches “at best” a specified target expression ( )ωFFŜ . In the above expression, pI  is 

the pp ×  identity matrix, 0S  is the constant spectral matrix of the white noise process 

( )tS , and Î  is the constant GnN ×  matrix that extracts the forces ( )tF  from the vector 

( )tG , i.e. 

 ( ) ( )tGItF ˆ=      and     [ ]0ˆ NII = . (92) 
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The equations of motion of the linearized system, Eq. (81), and Eq. (90) can be combined 

in the first order form 

 QUPU =+  (93) 

where 

 [ ]TTTT GwwU =  (94) 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
= −−−

H
IMCMKM

I
P

NN

eq

NNN

00

ˆ
00

111  (95) 

 [ ]TTTT SQ 00= . (96) 

 

Given the state space representation of Eq. (93), the covariance matrix UUK  of the 

vector process U is readily determined as the solution of the Lyapunov equation (see 

Lutes and Sarkani, 1997) 

 0ˆ2 SPKKP T
UUUU π=+  (97) 

where 0Ŝ  is the spectral matrix of the white noise process ( )tQ , that is 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0

0
00

000
000

ˆ

S
S . (98) 

Finally, the covariance matrix of the displacements, σ of Eq. (89), represents the top left 

NN ×  block of UUK . 

 

A comparison of the above multi-degree-of-freedom formulation with its single mode 

counterpart provides a better overall perspective: Eq. (83) and (84) provide the definition 

of the equivalent linear system given the response statistics as Eq. (13) and (10) did in the 

single mode case. Further, Eq. (90)-(98) yield the response statistics given the equivalent 

linear system properties and thus parallel Eq. (15). While closed form solutions for the 

equivalent linear system properties and response could often be derived in the single 
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mode case, the solution of Eq. (85)-(87) and (94)-(98) must be sought numerically by an 

iteration procedure. 

 

2.4  SPECTRAL ESTIMATION 

 

2.4.1  State-of-the-Art and Proposed Effort 

Analytic estimates of the fatigue life are often constructed from the spectrum of the stress 

process, in particular from the spectral moments (see Lutes and Larsen, 1990, Lutes and 

Sarkani, 1997, for general approaches and Kim et al., 2003, for a panel specific analysis). 

Accordingly, it is important to dispose of a general approach to obtain an estimate of the 

power spectral density of the response/stresses from the reduced order model of the panel. 

 

The reliable estimation of the power spectral density of the response of a nonlinear 

system is a classically difficult problem. The noteworthy general approaches which have 

been proposed to achieve this task include the equivalent linearization technique (see for 

example Roberts and Spanos, 1990), the recurrence strategy of Roy and Spanos (1993), 

the random system modeling of Soize (1995) and Soize and Le Fur (1997), and finally the 

Bouc (1994) and Bellizzi and Bouc (1999a, 1999b) amplitude-based approximation.  

 

Some comments on these different approaches is in order. The recursion technique of 

Roy and Spanos (1993) is based on a continued fraction expansion of the Kolmogorov 

equation (i.e. the backward or adjoint Fokker-Planck equation). Reliable approximations 

of the power spectral densities of the response of a series of nonlinear oscillators were 

indeed obtained but by taking fairly large number of terms (15-20 say). Further, no 

extension of this approach to the multi-degree-of-freedom situation has yet been 

proposed. 

 

System nonlinearities typically have several effects on the response spectral densities. 

Three or more effects are usually detected. First, there is shift in the peak frequency, 

increase for a hardening system and decrease for a softening one. Second, there is a 

broadening of the peak taking place and which result in fact from the frequency shift. 
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Indeed, the response of a linear/nonlinear system can be decomposed into cycles that 

have different/random magnitudes, even in the narrowband case. Since the frequency 

shift induced by nonlinearities increases in magnitude with increasing amplitude of 

motion, it is concluded that the largest cycles will be associated with a different 

frequency that the small ones. Thus, in nonlinear systems, the energy is diffused over a 

frequency band. Associated with the spread of energy is a decrease of the peak spectral 

values, which is the third typical effect of nonlinearities. 

 

Capturing the peak broadening effect is one of the challenges of the power spectral 

estimation problem. Soize (1995) proposed the consideration of a linear system with 

random coefficients to incorporate the variability of the frequency and obtained excellent 

results for Duffing oscillators with varying degrees of nonlinearity. Bouc (1994) followed 

a different approach in which the parameters of a linear system approximation are 

functions of the amplitude process (solved separately). Very good results were also 

obtained with this technique for Duffing-type systems. Note finally that both of these 

methods have been extended to the multi-degree-of-freedom situation (see Soize et Le 

Fur (1997) and Bellizzi and Bouc (1999a, 1999b)). 

 

These approaches certainly appear quite promising but the postbuckling analysis of 

panels is particularly challenging because of the strength of the nonlinearity, of the 

presence of multiple equilibrium positions, and finally, because of the recognized 

existence of multiple peaks of the power spectrum of the response in certain frequency 

ranges even with a single-degree-of-freedom system model. A critical inspection of the 

conditions under which the random (i.e. of Soize, 1995, and Soize and Le Fur, 1997) and 

amplitude-dependent (i.e. of Bouc (1994) and Bellizzi and Bouc (1999a, 1999b)) system 

models were developed sheds some doubt on the reliability of these two approaches given 

the above peculiarities of postbuckling problems. 

 

It should be noted that all of these approaches, even the recursion technique, are based 

on/involved linear or linear type systems. In this light, one could wonder if indeed these 

methods can yield reliable approximations of the power spectral density of the response 
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of strongly nonlinear systems. Surprisingly, the answer is yes; it is possible to select the 

coefficients of a constant coefficients linear system subjected to white noise so that its 

power spectral density matches to within any accuracy a given spectral shape (see Wiener 

and Masani, 1957, 1958). This property, in the discrete time case, has been used 

extensively by one of the investigators (see Mignolet, 1993) to produce fast algorithms 

for the simulation of random processes and, later on, for the structural identification of 

systems (Mignolet and Red-Horse, 1994). How do such techniques account for/model 

broad peaks such as those obtained in the strongly nonlinear systems considered here? 

This task is achieved by a combination of three different factors:  

 (i) by “fictitious” increases in the damping 

 (ii) by appropriate changes of the excitation strength to adjust the peak levels 

and 

(iii) by placing several natural frequencies close enough to each other so that their 

peaks merge into a single broadened one. 

 

It is thus concluded from the above discussion that the response of a nonlinear single-

degree-of-freedom system excited by white noise can be very accurately modeled (in 

terms of power spectral density, not probability density function) by one of the response 

components of a multi-degree-of-freedom system in which not only the frequencies (as 

might be expected from peak shifting) but also the damping and excitation terms are 

appropriately selected. These thoughts are akin to those leading to the equivalent 

linearization technique but in fact are broad generalization of them. Indeed, for a 

nonlinearity in restoring force (i.e. stiffness) only, the equivalent linearization technique 

leads simply to a stiffness correction leaving unchanged the order of the system (i.e. the 

single-degree-of-freedom nature) as well as the damping and excitation terms. This sole 

focus on the stiffness leads, as is well recognized, to a poor power spectral estimate as 

seen in Fig.3 for the single-degree-of-freedom problem associated with Eq. (2) with s = 

1.8. As could be expected the lack of change of the excitation strength and of the 

damping ratio leads to a peak that is very much sharper than the true peak and is also 

substantially higher. The value of varying the excitation strength and damping coefficient 

is clearly seen by comparing the matching of the nonlinear spectrum curve of Fig. 3 by its 



 

31 

equivalent linear and “optimum” single-degree-of-freedom approximations, where the 

latter corresponds to a linear single-degree-of-freedom with adjusted stiffness, damping 

coefficient, and excitation strength.  

 

The proposed approach is thus to model the response q(t) of the nonlinear equation (1), 

(2) by x(t) satisfying the linear equation 

 ( )tpxkxcx eqeq α=++  (99) 

in a first approximation, or 

 ( )tpzkxkzcxcx eqeqeqeq 112,11,12,11, α=++++  (100) 

and 

 ( )tpzkxkzcxcz eqeqeqeq 222,21,22,21, α=++++  (101) 

in a second approximation, etc. Note in Eq. (100) and (101) that z(t) is essentially an 

auxiliary, or unobservable, variable. 
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Figure 3. Exact spectrum (simulation) and its approximations by the equivalent 
linearization approach, and by the “optimum” SDOF curve 

 

Having established the model to be used, it is necessary next to devise a procedure for the 

selection of the structural coefficients of Eq. (99) and (100) that does not involve the 
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knowledge of the properties of the exact solution q(t). A first reaction is to proceed along 

the lines of the equivalent linearization approach. For clarity, assume first that the 

coefficient α is restricted to be equal to 1. Then, the standard (or force based) equivalent 

linearization strategy is to seek the values of eqc  and eqk  that minimize the error eqE  

defined as 

 ( )[ ]
⎭
⎬
⎫

⎩
⎨
⎧ −−γ+−ω+ζω=

232
00 12 xkxcxxsxEE eqeqeq  (102) 

for a fixed process x(t). Since a stationary process and its derivative are uncorrelated, it is 

readily found that the minimum of eqE  is achieved when 

 02 ωζ=eqc   (103) 

and 

 ( ) [ ]22
0 31 xEskeq γ+−ω=  (104) 

 

Thus, an adjustment of the damping (and consequently a broadening of the spectral peak) 

cannot occur in the context of the standard formulation. The shortcoming of this strategy 

is in fact deeper, the present work has shown that a nontrivial two-degree-of-freedom 

type approximation of the form of Eq. (100) and (101) does not exist; the minimization of 
)2(

eqE  defined as 

 ( )[ ]
⎭
⎬
⎫

⎩
⎨
⎧ −−−−γ+−ω+ζω=

2
12,11,12,11,

32
00

)2( 12 zkxkzcxcxxsxEE eqeqeqeqeq  

  (105)  

renders the single-degree-of-freedom model of Eq. (99) with Eq. (103) and (104). To 

clarify the source of this weakness, assume that the term 3qγ  is approximated by a linear 

functional of q and q , ( )qqF , . The error to be minimized is thus 

 ( )[ ] [ ] ( )[ ] ( )[ ]qqFEqqFqEqEqqFqEEeq ,,2, 236223)3( +γ−γ=
⎭
⎬
⎫

⎩
⎨
⎧ −γ= . (106) 

Since the response process q(t) is assumed to be known, the first term in the second right-

hand-side of Eq. (106) is a constant and does not intervene in the minimization. Further, 



 

33 

the linear equivalent strategy technique relies on moments that are evaluated under an 

assumed distribution, usually Gaussian. Under such an assumption, it is found that the 

second term in the second right-hand-side of Eq. (106) can be expressed as 

 ( )[ ] [ ] ( )[ ]qqFqEqEqqFqE ,3, 23 γ=γ  (107) 

so that the linear functional ( )qqF ,  need to minimize the expression 

 [ ] [ ] ( )[ ] ( )[ ]qqFEqqFqEqEqEEeq ,,6 2262)3( +γ−γ=  (108) 

or  

 [ ] [ ]{ } [ ] ( )[ ]
⎭
⎬
⎫

⎩
⎨
⎧ −γ+

⎭
⎬
⎫

⎩
⎨
⎧ −γ=

223262)3( ,39 qqFqqEEqEqEEeq . (109) 

In this latter form, Eq. (109), it is concluded that ( ) [ ]qqEqqF 23, γ= will indeed 

provide the best approximation. The above discussion demonstrates that higher order 

approximations (i.e. with more than one-degree-of-freedom) of the type of Eq. (100) and 

(101) are not possible in the context of the standard formulation of the equivalent 

linearization technique. 

 

Further, the above derivations associate this weakness with the lack of importance of the 

term [ ]62 qEγ in the minimization process. Equivalently stated, the weakness of the 

equivalent linearization is the assumption that the response process q(t) is fixed. In fact, 

this assumption is particularly curious as the moments of the response are to be evaluated 

later on by relying on the response of the equivalent linear system itself. It would thus 

seem appropriate to immediately consider all moments as functions of the unknown 

parameters of the equivalent linear system and to proceed with the minimization of Eq. 

(106). In fact, such an idea has been proposed in the past by Socha and Pawleta (1994) 

and Elishakoff and Colajanni (1997) and has recently been referred to as the SPEC (for 

the initial of the 4 co-authors) equivalent linearization by Crandall (2001). 

 

While the SPEC co-authors have argued that the initial consideration of the response 

process as fixed was a flaw of the standard equivalent linearization procedure, Crandall 
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has demonstrated that in fact the standard and SPEC formulations are based on two 

different minimization criteria, thereby establishing both techniques on a firm foundation. 

The very surprising conclusions obtained by Socha and Pawleta (1994), Elishakoff and 

Colajanni (1997), and Crandall (2001) is that the SPEC formulation leads in fact to 

generally worse estimates of the variance of the response than does the standard 

approach. 

 

Note however that these various investigators have all held the damping constant, 

focusing only on the selection of an equivalent stiffness. The question to be addressed in 

regards to the present focus are thus as follows: 

(1)  can the SPEC equivalent linearization lead to an increase in the damping/peak 

broadening? To this point, no increase in damping has ever been reported in 

connection with a nonlinearity on the restoring force only. 

(2)  can the SPEC equivalent linearization include or be re-formulated to include a 

varying excitation strength? To this point, no equivalent linearization formuation 

has ever been proposed that provides the tuning of the excitation. 

(3)  can the SPEC equivalent linearization include or be re-formulated to include an 

increase dynamics, i.e. auxiliary variables of the type shown in Eq. (100) and 

(101)? To this point again, no such procedure has been proposed. 

 

Given the highly innovative work proposed, it was decided to proceed in careful steps 

and to address each of these questions in crescendo.  
 

2.4.2  Damping Estimation in SPEC Equivalent Linearization 
The capability to capture the peak broadening in part by an increase in the system 

damping was considered to be the first and most important requisite of the proposed 

formulation. To this end, the Duffing system described by Eq. (1) and (2) was considered 

and the minimization of Eq. (106) was reconsidered but under the assumption that the 

response process q(t) does depend on the equivalent stiffness and damping coefficients. 

Note that no variation of the excitation strength was considered in this first problem, i.e. 

α = 1. Thus, a substantial increase in the system damping would also lead to a dramatic 
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reduction of the peak value of the power spectrum which may then be below its nonlinear 

(exact) counterpart. 

 

Since the response process is stationary, it is uncorrelated (independent given the 

Gaussian assumption) of its velocity and the error of Eq. (7) can be rewritten as 

 ( ) [ ]2223 xEcxxkEEeq +⎥⎦
⎤

⎢⎣
⎡ γ+=  (110) 

where, for simplicity of notation, 

 ( ) eqksk −−ω= 12
0      and     eqcc −ωζ= 02 . (111), (112) 

Note that the last term on the right-hand-side of Eq. (110) is minimized when 0=c  but 

since the first term does also depend on the equivalent damping coefficient implicitly 

through the response process q, the condition 0=c  does not necessarily minimize the 

entire error of Eq. (110) as it did in the standard formulation, see Eq. (103). Using the 

expression of the variances of the response of the equivalent linear system, i.e.  

 [ ]
eqeq

pp
ck

S
xE

π
=2      and     [ ]

eq

pp
c
S

xE
π

=2 , (103), (104) 

and assuming a Gaussian distribution of x yields the equivalent form of eqE  
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The minimization of the above equation with respect to eqk  and eqc  (with Eq. (101) and 

(102)) leads to the values of these coefficients and to the approximate power spectral 

density 

 ( )
( ) 2222

2

ω+−ω

α
=ω

eqeq

pp
xx

ck

S
S  (106) 

where α = 1 here. 

 

The application of the above approach to the nonlinear equation (1), and (2) for the 

104dB excitation considered led to the SPEC-k curve of Fig. 4 when, as proposed by the 
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SPEC authors and Crandall (2001), only the stiffness of the equivalent linear system is 

optimized and 02 ωζ=eqc . It also led to the SPEC-kc curve when both equivalent 

stiffness and damping coefficients are selected to minimize Eq. (105). 

 

Certainly, neither the SPEC-k nor the SPEC-kc approximations of the exact power 

spectral density are very good. Nevertheless, it is clearly seen that the SPEC-kc curve has 

a much higher damping ratio than do the SPEC-k and/or standard equivalent linear 

systems (see Fig. 3). To obtain a better perspective on its peak width, the SPEC-kc 

approximation was scaled by a factor of 6.5 that renders its peak value equal to its 

simulation counterpart. Surprisingly, a comparison of the corresponding curve (noted 

SPEC-kc*6.5 on Fig. 4) and the simulation results indicate that the SPEC-kc approach 

yields a very reliable estimate of the relative peak width (i.e. damping ratio) of the 

spectrum. These results also demonstrate the need to consider a non unit force 

magnification factor α. The occurrence of the peak of the SPEC-kc spectrum at a 

frequency substantially lower than that of the simulation spectrum may appear surprising 

but it is a consequence of the lack of a force magnification factor. Indeed, the SPEC-kc 

approximation with α = 1 implies a response level that is much less than its exact 

counterpart. Thus, the SPEC-kc approximation should exhibit a much smaller frequency 

shift than the exact spectrum, as observed on Fig. 4. 
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Figure 4. Exact spectrum (simulation) and its approximations by the SPEC-k and SPEC-
kc techniques. Also included is the SPEC-kc scaled by a factor of 6.5. 

 
It is thus concluded that the minimization of Eq. (92) considering that the response 

process is indeed dependent on the equivalent linear system parameters provides the first 

known mean to broaden the peak within the context of the equivalent linearization 

technique. This important finding validates the SPEC formulation and motivates 

continued efforts in this direction, more specifically, the consideration of a non unit force 

magnification. 
 

2.4.3  Force Magnification Estimation in SPEC Equivalent 

Linearization 
Since the answer to the first question is yes, i.e. peak broadening can be partially captured 

by the SPEC strategy, it is now desired to include a force magnification coefficient 1≠α  

in the formulation. It would seem at first that the inclusion of this term is straightforward 

and can be achieved by the consideration of an additional equivalent mass in the system, 

i.e. α= /1eqm . Then, the parameters eqk , eqc , and α would be evaluated by minimizing 

the error 
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 ( )[ ]
⎭
⎬
⎫

⎩
⎨
⎧ β−β−β−γ+−ω+ζω+=

232
00 12 xkxcxxxsxxEE eqeqeq  (107) 

where α=β /1 . The minimization of Eq. (107) is however not properly defined as the 

acceleration process x  has infinite power (variance) as it involves a white noise 

component, see Eq. (1) and (2). 

 

The above approach is thus not appropriate and an alternate formulation must be sought. 

While the variance of x  is infinite, this process has a well defined power spectrum. 

Accordingly, it is proposed here to reformulate the selection of the optimum values of 

eqk , eqc , and α as a minimization problem in the frequency (spectral) domain. To this 

end, introduce the error process E(t) as 

 ( ) ( ) ( ) ( )[ ] 32
00 121 xxksxcxtE eqeq γ+β−−ω+β−ζω+β−= . (108)  

As stated above, note that ( )( ) ( )[ ]tEEtEEeq
2var == . Instead of minimizing this 

quantity, it is desired to minimize the power spectrum ( )ωEES  of the error process. This 

function can be derived from Eq. (108) by first evaluating the autocorrelation function 

( ) ( ) ( )[ ]τ+=τ tEtEEREE . Specifically, it is found that 
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Substantial simplifications do occur in this equation. Note first that  

 ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]τ+=τ++τ+ txtxE
dt
dtxtxEtxtxE  
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which vanishes in the stationary limit as all moments become independent of the time 

shift t. The same result is obtained in connection with ( ) ( )[ ] ( ) ( )[ ]τ++τ+ txtxEtxtxE . 

Next, the term ( ) ( )[ ] ( ) ( )[ ]τ++τ+ txtxEtxtxE  can be expressed as 

( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]{ } ( ) ( )[ ]τ+−τ++τ+=τ++τ+ txtxEtxtxEtxtxE
dt
dtxtxEtxtxE 2

 ( ) ( )[ ]τ+−= txtxE2  

where the last equality results again from the stationary assumption. 

 

The next group of terms involves the third power of x and can generically be written as 

( ) ( )[ ] ( ) ( )[ ]τ++τ+ txtyEtytxE 33 where y is either x, x , or x . Relying on an assumed 

joint Gaussian distribution of the response processes x, x , and x , it is found that 

( ) ( )[ ] ( ) ( )[ ] [ ] ( ) ( )[ ] ( ) ( )[ ]{ }τ++τ+=τ++τ+ txtyEtytxExEtxtyEtytxE 233 3 . 

With these simplifications, Eq. (109) becomes 

( ) ( ) ( ) ( ) ( ) ( )[ ]{ } ( )
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  (110) 

It remains to evaluate the last expectation in the above relation, i.e. ( ) ( )[ ]τ+txtxE 33 . 

Specifically, relying again on a Gaussian distribution of the response process, it is found 

that  

 ( ) ( )[ ] ( ) ( )τ+τσ=τ+ 3433 69 xxxxx RRtxtxE .  (111) 

 

Finally, the power spectral density of the error process, ( )ωEES , can be found by taking 

the Fourier transform of Eq. (110) which yields 

 ( ) ( ) ( ) ( )ω+ωω=ω BSAS xxEE  (112) 

where ( )ωxxS  is specified by Eq. (106) and 
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and 

 ( ) ( )∫
+∞

∞−

ττ
π

=ω dRB xx
33 . (114) 

This very last term remains to be computed to complete the evaluation of the power 

spectral density of the error process. In the case of a single-degree-of-freedom system 

excited by white noise, it is known (see Lutes and Sarkani, 1997) that 
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 (115) 

where 4/22
eqeqd ck −=ω . Raising this expression to the third power and integrating over 

the entire domain of lag values yields a closed form expression of ( )ωB  as a sum of 

rational terms in ω which is omitted here for brevity. 

 

Regrouping all of these results provides an expression for the power spectrum of the error 

process ( )ωEES , see Eq. (112). Since E(t) is a genuine random process, its power spectral 

density is a non-negative function of the frequency ω. Accordingly, ( )ωEES  itself can be 

used as an error to be minimized for the selection of the optimal values of the equivalent 

linear system parameters eqk , eqc , and α. Several variants of this process have been 

investigated, i.e. 

(a) a purely local approach where the minimization is accomplished at each 

frequency separately yielding frequency dependent parameters eqk , eqc , and α 

(b) a more averaged approach where the error over certain frequency domains is 

performed and the parameters eqk , eqc , and α are constant within each of these 

domains 

and, finally, 
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(c) a purely global approach where the error over the entire finite frequency domain 

of interest is minimized yielding unique coefficients eqk , eqc , and α. 

 

Unfortunately, these efforts were not fruitful and another approach, based on the 

methodology of Bouc (1994) and Soize (1995), was undertaken. This formulation is 

described in the next section. 

 

2.4.4  Random Parameter Linear System Modeling 
This approach is described in details in Appendix A: 

 

Yang, B., and Mignolet, M.P., “Implicit Modeling of the Power Spectral Density of the 

Response of a Class of Nonlinear Oscillators,” Proceedings of the 9th Joint Specialty 

Conference on Probabilistic Mechanics and Structural Reliability, Albuquerque, New 

Mexico, Jul. 26-28, 2004. 

 

In addition, it was shown that this method could produce reliable estimates of the power 

spectral density of the stresses as follows. For a single mode solution, any stress is related 

to the displacement q(t) through the memoryless quadratic transformation 

 2
210 qCqCCS ++= . (116) 

Then, the determination of the power spectral density of the stress process can be 

achieved by first estimating its autocorrelation function 

 ( ) ( ) ( )[ ] [ ]{ }2SEtStSERSS −τ+=τ  (117) 

which is independent of the stress shift 0C . The determination of ( )τSSR  in terms of its 

displacement counterpart ( )τqqR  requires the evaluation of third and fourth order 

moments of the form ( ) ( )[ ]τ+tqtqE 2  and ( ) ( )[ ]τ+tqtqE 22  which in turn 

necessitate the joint probability density function of q(t) and q(t + τ), that is unfortunately 

not available in closed form, even for the one mode model. It is proposed here to remedy 

this situation by first assuming a joint Gaussian probability density function of q(t) and 
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q(t + τ) and then rescaling the achieved power spectral density according to the total 

energy of the stress process. 

 

Under the assumptions that the random variables q(t) and q(t +τ) are zero mean and 

jointly Gaussian, it is  found that  

 ( ) ( )[ ]τ+tqtqE 2  = 0 (118) 

and 

 ( ) ( )[ ] ( ){ } 4222 2 qqqRtqtqE σ+τ=τ+ . (119) 

Combining Eq. (116)-(119), it is found that  

 ( ) ( ) ( ){ }22
2

2
1 2 τ+τ=τ qqqqSS RCRCR , (120) 

or in terms of spectrum 

 ( ) ( ) ( )ω+ω=ω SCSCS qqSS
2
2

2
1 2  (121) 

where  

 ( ) ( ){ } ττ
π

=ω ∫
+∞

∞−

dRS qq
2

2
1 . (122) 

The above result is strongly dependent on the assumed Gaussian character of the process 

q(t) and leads in fact to an overestimation of the energy in the second lobe (second 

harmonics) of the stress spectrum although its overall shape appears correct. Thus, the 

second step in the estimation process is to rectify that energy and it is accomplished 

under the assumption that q(t) is narrowband. Accordingly Eq. (121) is modified as 

 ( ) ( ) ( )ωη+ω=ω SCSCS qqSS
2
2

2
1 2  (123) 

for a value of η ≠ 1 to be selected. To this end, consider first the autocovariance of 

( ) ( )tqtS 2
2 =  

 ( ) ( ) ( )[ ]τ+=τ tqtqEK SS
22

22
. (124) 

Then, assume that q(t) is narrowband and thus that it can be written as 

 ( ) ( ) ( )Φ+Ω= ttAtq cos  (125) 
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where Ω is the center frequency of the process, Φ is a uniform random variable in [0, 2π], 

and A(t) is a slowly varying process independent of Φ. Then,  

 ( ) ( ) ( )[ ] ⎥⎦
⎤

⎢⎣
⎡ τΩ+τ+=τ 2cos

8
1

4
122

22
tAtAEK SS . (126) 

As expected, it is seen from the above equation that the energy of the process ( )tS2  is 

distributed in two domains: around the zero frequency, i.e. the term 1/4 

( ) ( )[ ]τ+tAtAE 22 , and around the second harmonic (2Ω), i.e. 1/8 ( ) ( )[ ]τ+tAtAE 22 . 

The ratio of these two terms being 2, it is then concluded that the energy around the 

second harmonics is approximately 1/3 of the total energy, i.e. 1/3 of ( )0
22SSK  where 

 ( ) ( )[ ] 4
4

40
22 qSS tqEK σκ== . (127) 

in which 4κ  denotes the kurtosis of the displacement process q(t). 

 

On the basis of these findings, it is proposed to evaluate η in Eq. (121) so that the energy 

in the second lobe of the stress spectrum (second harmonics of the displacement process) 

be equal to 1/3 of the total power arising from the quadratic term in Eq. (116). That is, 

 ( ) ( ) 4
4 1

3
12

2

qdS σ−κ=ωωη ∫
Ω∈ω

 (128) 

where 2Ω  denotes the domain of frequencies double those of the displacement process. 

 

This approach was applied to the response process q (t) of the dimensionless one mode 

model of Appendix A with γ = 769.532 and with 1C  = 18.962 and 2C  = 11.792, which 

are representative of a 154dB excitation on the titanium panel considered in Phase I. 

Shown in Fig. 5 are the stress spectra obtained by Monte Carlo (MC) simulation of Eq. 

(1), (2), and (116), from Eq. (121), and from Eq. (123) and (128) (the latter two models 

were based on the autocorrelation function ( )τqqR  from Bouc (1994)). While the 

original, Gaussian approximation, Eq. (121), substantially overestimates the energy in the 

second lobe, the proposed approximation of Eq. (123) and (128) leads to an excellent 
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match of this second lobe and thus can reliably be used e.g. for ensuing fatigue-life 

computations. 
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Figure 5. Comparison of stress spectra computed by Monte Carlo simulations of Eq. (1), 
(2), and (116) (“MC simulation”), and by using the method of Appendix A with either 

Eq. (121) or Eq. (123) and (128). 
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3. FATIGUE LIFE AND ACCUMULATED DAMAGE PREDICTION 
 

An original and accurate model for the accumulated damage induced on a panel 

undergoing large deformations was derived as a part of this contract and is given in 

details in Appendix B: 
 

Yang, B., Mignolet, M.P., and S.M. Spottswood, “Modeling of Damage Accumulation 

for Duffing Oscillator-Type Systems Under Severe Random Excitations,” Probabilistic 

Engineering Mechanics, Vol. 19, pp. 185-194, 2004. 
 

Additional results not included in the paper are presented here for completeness.  

 

3.1 Additional Comments on Narrowbandedness 
 

A better check of narrowbandedness than the spectrum is the assessment of the 

frequencies at which the stress ranges occur. To this end, the simulation data of the paper 

was revisited and the stress ranges were recorded together with the time (or half-period) 

needed to achieve these stress ranges. This information was then gathered into the two-

dimensional histograms of the population of stress ranges and half-periods which are 

shown in Fig. 6-10 for the 94 dB, 124 dB, 134 dB, 144 dB, and 154 dB sound pressure 

levels, respectively. The plot corresponding to the 94 dB SPL is presented here as a good 

narrowband example. In these figures, the red and blue colors indicate the largest and 

lowest number of occurrences, respectively. A number of important observations can be 

drawn from these figures. 
 

First and foremost, the domains of high occurrences, as marked in red, correspond to 

narrow half-period intervals thereby providing a strong support to the narrowband 

assumption. The presence in these figures of 2 main “ridges” and some secondary ones 

should also be noted. The “ridge” corresponding to small values of the range corresponds 

to motions around the buckled states while the other one is associated with the snap-

throughs. At low SPL, see Fig. 6 and 7 for 94 dB and 124 dB sound pressure levels, the 

small ridge is dominant but a switch occurs between 124 dB and 134 dB and the 
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Figure 6. Two-dimensional histogram of ranges and half-periods, SPL = 94 dB 

 

 
Figure 7. Two-dimensional histogram of ranges and half-periods, SPL = 124 dB 
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Figure 8. Two-dimensional histogram of ranges and half-periods, SPL = 134 dB 

 

 
Figure 9. Two-dimensional histogram of ranges and half-periods, SPL = 144 dB 
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Figure 10. Two-dimensional histogram of ranges and half-periods, SPL = 154 dB 

 
dominant behavior (as characterized by the red zone) moves to the snap-through (high 

range) ridge. Note further that the peaks of the two ridges occur in the same domain of 

half-periods so that snap-throughs and motions around the buckled states appear to be 

characterized by the same frequency, i.e. they are part of the same process. 

 

Next, attention should be paid to the secondary ridges that occur in all pictures and that 

correspond to harmonics of the half-periods. In classical non-linear terminology, these 

ridges would be associated with subharmonics of the fundamental frequency while 

similar ridges for the superharmonics (integer fractions of the dominant half-period) do 

not seem to be present. The presence of subharmonics is often found to be associated 

with a chaotic, or potentially chaotic, behavior and thus is not surprising here in view of 

the established chaotic nature of the snap-through process in some conditions (see Moon, 

1992, for a discussion). 
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(a) (b) 

(c) (d) 

 
(e) 

 
Figure 11. Histograms of the half-period for 

(a) SPL = 94 dB, (b) 124 dB, (c) 134 dB, (d) 144 dB, and (e) 154 dB  
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Finally, note the sharp peak occurring at very small values of both the range and the half-

period. In fact, these half-period values are equal to one or two of the time steps used for 

the numerical integration of the equations of motion fairly independently of the time step 

used. It is thus concluded that this peak is associated with the cut-off frequency of the 

simulation and, consequently, is a numerical effect not a physical phenomenon.  

 

From the joint distribution of the ranges and half-periods of Fig. 6-10 one can also obtain 

the marginal distributions of the half-periods and the ranges. The histograms of the half-

periods are shown first in Fig. 11 (a)-(e). It is seen from these figures that the peak of the 

half-period distribution is only slightly broader at the high sound pressure levels (SPL of 

124 dB - 154 dB) than it is for the low ones, thus further validating the narrowband 

assumption.  

 

Interestingly, the subharmonics are particularly visible in these figures, especially at the 

lowest sound pressure levels. As the excitation strengthens, the tail of the distribution of 

the half-periods appears to absorb the small peaks associated with the subharmonics 

which are finally completely invisible in Fig. 11 (e) for a SPL of 154 dB. These 

subharmonics are nevertheless present as can be seen from the secondary ridge in Fig. 10. 

 

While the changes in the distribution of half-periods appear minimal, see Fig. 11, the 

probability density function of the stress ranges experiences dramatic modifications as 

the sound pressure level increases, see Fig. 12-16. At low sound pressure levels, see Fig. 

12 for 94 dB, the small motions around the buckled states are approximately Gaussian 

and a Rayleigh probability density function of the stress ranges is obtained as confirmed 

by the match of the simulation and Rayleigh curves. Near the upper end of the transition 

zone, i.e. for sound pressure levels of 124 and 134 dB, the probability density function 

exhibits two peaks, one corresponding to the motions around the buckled states and the 

other to the snap-throughs. Note, see Fig. 13, that the peak associated with the motions 

around the buckled states does no longer follow a Rayleigh distribution as seen by the 

fairly poor matching of the simulation and Rayleigh curves (the Rayleigh probability 

density function was obtained by matching the peak location and peak value of the 
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simulation results). This observation further confirms the complexity of the transition 

zone in which the two peaks are present and equally important. 

 

While the peak corresponding to the snap-throughs (the right peak) may appear 

somewhat reminiscent of a Rayleigh distribution as well at the 124 dB excitation level 

(see Fig. 13), it is certainly not the case at the higher sound pressure levels. This 

departure from the Rayleigh distribution is clearly associated with a strong non-Gaussian 

character of the stress process. 
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Figure 12. Probability density function of the stress ranges and its Rayleigh 

approximation, SPL = 94 dB. 
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Figure 13. Probability density function of the stress ranges and its approximations by the 

Rayleigh distribution and the model of Eq. (B.25), SPL = 124 dB. 
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Figure 14. Probability density function of the stress ranges and its approximations by Eq. 
(B.25) (“Model”), Eq. (B.26) (“Model - s = 1”), and Eq. (B.28) (“2p- Model”), SPL = 134 dB. 
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Figure 15. Probability density function of the stress ranges and its approximations by Eq. 
(B.25) (“Model”), Eq. (B.26) (“Model - s = 1”), and Eq. (B.28) (“2p- Model”), SPL = 144 dB. 
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Figure 16. Probability density function of the stress ranges and its approximations by Eq. 

(B.25) (“Model”), Eq. (B.26) (“Model - s = 1”), and Eq. (B.28) (“2p- Model”), SPL = 154 dB. 
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Figures 6-10 have provided a strong argument in favor of narrowbandedness but one final 

check can be made to fully confirm this property of the stress process. Specifically, since 

Eq. (B.11)-(B.13) (i.e. Eq. (11)-(13) of Appendix B) are exact in the case of a 

narrowband process, it was decided to compute the expected damage from these 

equations using an estimate of the frequency and the probability density of the stress 

ranges obtained by simulation, i.e. the data of Fig. 13-16. For simplicity and consistency, 

the frequency of the process was selected as qq σσ=ω / . The results of these 

computations are shown in Fig. 17 for the excitation levels of 124 dB, 134 dB, 144 dB, 

and 154 dB, and for the values of m in the domain [1, 8]. Surprisingly, it is found that the 

errors are independent of m! This situation can only occur if the 

 (a) the process is narrowband, and 

 (b) the distribution of stress ranges is exact, and 

 (c) the estimate of the frequency is in error. 
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Figure 17. Relative error on the prediction of the expected damage as a function  
of the S-N exponent m for different SPL (124 dB, 134 dB, 144 dB, and 154 dB), 

Eq. (11)-(14) and the exact (simulation) distribution of stress ranges. 
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In fact, a simple correction could be made to eliminate all errors: if the frequency of the 

process is selected so that the damage corresponding to m = 1 equals the Rayleigh value 

(which is exact if the velocity process is Gaussian as is the case here) then all errors 

become negligible. 

 

It is then concluded from the above discussions that the stress process is indeed 

narrowband in the high sound pressure level regime. 

 

3.2  Additional Comments on the Experimental Data 

 
While the general behavior of the prediction errors was similar for the experimental data 

and for the one-mode model simulations, there were some noticeable differences, e.g. the 

reliability of the 2-parameter model, Eq. (B.28). Two potential origins of these 

differences were investigated: (i) the narrowbandedness of the strain processs and (ii) the 

2C  effect on the strains. To investigate the narrowband character of the experimentally 

measured strains, the two-dimensional histogram of the ranges and half-periods was 

produced for each sound pressure level. The plots corresponding to SPL of 152 dB, 158 

dB, 167 dB, and 172 dB are shown in Fig. 18-21. Besides the high occurrence of very 

short ranges at a high frequency, the dominant contribution to the damage originates from 

a small band of half-periods suggesting that the strain process can be considered to be 

narrowband. The presence of subharmonics of the fundamental frequency, as already 

seen in Fig. 6-10, can also be noted in Fig. 18-21 but are especially clear on Fig. 21. 

From these figures, the probability density function of the strain ranges is readily 

extracted and is seen in Fig. 22 for all sound pressure levels. A comparison of these 

different curves clearly indicates that there no sharp transition in this data, as opposed to 

the simulation results of the buckled panel. 

 

The assessment of the membrane effects, i.e. the coefficient 2C , on the displacement-

strain relation brought up some important issues not present in the single mode model and 

which are under continued investigation. Specifically, the one-mode model yields the 
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quadratic displacement-strain/stress relation of Eq. (1) and (2). In a complex multi-mode 

situation however it could be expected that the membrane ( 2
2 qC ) and bending ( qC1 ) 

effects would not originate in the same combination q of modal contributions. Thus, it 

could be expected that Eq. (2) might take the form 

 2
210 yCqCCS ++=  (129) 

where q and y would be different random variables. This issue will be re-addressed in 

details in connection with the reduced order simulations in which both displacements and 

stresses will be recorded (see Appendix C). 

 

It was then desired here to assess the level of the membrane effects on the reliability or 

lack thereof of the results shown in Appendix B. To this end, both Eq. (1), (2) and (129) 

were considered and the coefficients 0C , 1C , 2C , and/or the variances of the underlying 

processes q and y ( [ ]2qE and [ ]2yE ) were estimated from the characteristics of the 

measured strains. 

 

Equations (1) and (2) were considered first. It was assumed that the underlying process q 

was symmetric and zero mean. A nonzero mean effect would be transferred to the 

coefficient 0C . Although it was argued in the Phase I final report that Eq. (1),(2) are 
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Figure 18. Histogram of ranges and half-periods, experimental data, SPL = 152 dB. 

 
Figure 19. Histogram of ranges and half-periods, experimental data, SPL = 158 dB. 
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Figure 20. Histogram of ranges and half-periods, experimental data, SPL = 167 dB. 

 

 
Figure 21. Histogram of ranges and half-periods, experimental data, SPL = 172 dB. 
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Figure 22. Probability density function of strain ranges, experimental data, all SPL. 

 
not one-to-one, it was noted that the time histories of the strains did not include any 

bottoming out occurrences so that the range of values of q did not appear to come near 

the minimum of the quadratic expression and thus the transformation could be thought of 

as one-to-one and monotonic, increasing say. Then, [ ] [ ]0ProbProb 0 >=> qCS = 0.5 in 

view of the symmetry of the process q and it is concluded that the coefficient 0C  equals 

the median of the strain distribution. 

 

Since q is unknown, it is not possible to evaluate separately 1C , 2C , and [ ]2qE . 

Accordingly, it will be assumed that 1C  = 1. Then, 2C  and [ ]2qE can be estimated 

from the mean and variance of the strains. Specifically, it is found that 

 [ ] [ ]2
20 qECCSES +==µ  (130) 

and 
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 ( )[ ] [ ] ( ) [ ]{ }22
4

2
2

22
1

2 1 qECqECSE qS −κ+=µ−  (131) 

where q4κ  is the unknown coefficient of kurtosis of the underlying response process q. 

Solving these two nonlinear equations yields 

 [ ] ( )[ ] ( )[ ]204
22 1 CSEqE SqS −µ−κ−µ−=  (132) 

and 

 
[ ]2

0
2

qE

C
C S −µ

= . (133) 

It would seem that the estimation of 2C  and [ ]2qE is circular: the coefficient q4κ  is 

necessary to obtain these parameters but it is also a part of the solution as the process q is 

unknown. In fact, it was found in all cases that the second term on the right-hand-side of 

Eq. (41) was in the range of 0.1% to 1% of the first term so that Sq σ≈σ . It was thus 

concluded that the membrane effects were negligible according to the model of Eq. (1) 

and (2). Interestingly, the coefficients 2C  were found to be approximately constant: 

equal to 154 at 152 dB and 114 at 172 dB. As a final check, the third moment of the 

strains were recomputed from Eq. (1) and (2) under the assumption of a Gaussian 

distribution for the process q and they were found to be at least of the same order of 

magnitude as the third moment of the data. 

 

The estimation of the parameters of the model of Eq. (129) requires the joint probability 

density function of the random variables q and y, or at least some information about their 

correlation. If they are fully correlated, q and y are proportional to each other and the 

model of Eq. (1) and (2) is recovered. Thus, the opposite limiting case where q and y are 

independent was assumed to get a range of perspectives on the magnitude of the 

membrane effects. The arguments that led to the estimation of 0C  as the median of the 

strains do not apply any longer and this parameter and the variances [ ]2qE and [ ]2yE  
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(the values of both parameters 1C  and 2C  must be assumed) were estimated from the 

first three moments of the strains. Proceeding as in Eq. (130) and (131), it was found that 

 [ ] [ ]2
20 yECCSES +==µ  (134) 

and 

 ( )[ ] [ ] ( ) [ ]{ }22
4

2
2

22
1

2 1 yECqECSE yS −κ+=µ−  (135) 

The evaluation of the third moment was for simplicity accomplished under the 

assumption of a Gaussian random variable y and led to  

 ( )[ ] [ ]{ }323
2

3 8 yECSE S =µ− . (136) 

Solving Eq. (135) and (136) for [ ]2qE and [ ]2yE  led to the conclusion that the 

membrane term accounted for about 10%-20% of the variance of the strains, see Eq. 

(135), throughout the entire range of sound pressure levels. 

 

3.3 Validation of the Damage Accumulation Model to Reduced Order 
Modeling Data 

 

The damage accumulation model introduced in Appendix B was successfully validated to 

data generated by the reduced order modeling strategy (ELSTEP/FAT). This validation is 

presented in Appendix C: 

 

Radu, A., Yang, B., Kim, K., and Mignolet, M.P.,  “Prediction of the Dynamic Response 

and Fatigue Life of Panels Subjected to Thermo-Acoustic Loading,” Proceedings of the 

45th Structures, Structural Dynamics, and Materials Conference, Palm Springs, 

California, Apr. 19-22, 2004. Paper AIAA-2004-1557. 
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4.  REDUCED ORDER MODELING 
The work in this area has focused on the formulation of a reliable reduced order modeling 

strategy of panels subjected to thermo-acoustic effects and the development of an 

associated general purpose software. This work is described in details in Appendices C, 

D, and E. 

 

Appendix D: 

Mignolet, M.P., Radu, A.G., and Gao, X., “Validation of Reduced Order Modeling for 

the Prediction of the Response and Fatigue Life of Panels Subjected to Thermo-Acoustic 

Effects,” Proceedings of the 8th International Conference on Recent Advances in 

Structural Dynamics, Southampton, United Kingdom, Jul. 14-16, 2003. 

 

Appendix E: 

ELSTEP/FAT v.β2.0 User’s Manual. 
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Abstract 
 
This paper addresses the representation of the power spectral density of the Duffing Oscillator 
through the random stiffness linear single-degree-of-freedom model. Some similar existing 
representations are reviewed and a new parametric distribution of the stiffnesses is proposed. The 
estimation of the two parameters of this model is then addressed. Examples of application 
demonstrate that the proposed representation is simple and accurate from systems behaving 
almost linearly to those exhibit a very strong nonlinearity. 
 
Introduction 
 
The power spectral density represents one of the most basic description of the time 
varying aspects of a stochastic process and thus is an essential information to estimate. 
Yet, accurately determining this power spectrum without recourse to comprehensive 
Monte Carlo simulations is in general a particularly difficult task even for the simplest 
systems, e.g. single-degree-of-freedom nonlinear oscillators subjected to white noise 
excitation. Although the stationary probability density function of the response is known 
in closed form for a class of such systems, no similar expression is available for its power 
spectrum. In fact, this scarcity of solution arises because the spectrum relates to the full 
nonstationary Fokker-Planck equation of which only a handful of solutions exist (e.g. 
Caughey and Dienes, 1961, and the extension of Mignolet and Fan, 1993). 
 
In light of these difficulties, it has sometime been suggested to rely on the equivalent 
linearization approach which is known to provide good estimates of the variance of the 
response in many situations. While this approach achieves some success, i.e. it does 
predict quite well the shifting of the spectrum as the excitation level is increased for the 
Duffing system considered here, it also fails to account for other aspects such as the peak 
broadening (see Soize, 1995, for a discussion). Capturing this feature of nonlinearity 
requires a more sophisticated model than the equivalent linear system. In fact, an 
improved shaping of the power spectrum can be obtained by representing the response of 
the nonlinear oscillator as that of a linear multi-degree-of-freedom system. The 
application of either the recursion method (Roy and Spanos, 1993) or the cumulant 
closure strategy (Cai and Lin, 1996) does lead to such a model. 
 
Another group of efforts have relied on the representation of the solution of the nonlinear 
stochastic differential equation as the response of a linear system with random 
coefficients (e.g. see Miles, 1989, Bouc, 1994, Soize, 1995, Krenk and Roberts, 1999). 
Such a model can be justified by decomposing any realization of the response process 
into a series of half cycles of different amplitudes and, generally, different frequencies 
given the nonlinearity of the system. In fact, a more formal and complete derivation of 
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this model has been accomplished on the basis of the statistical averaging by Bouc (1994) 
and Krenk and Roberts (1999). A different approach was adopted by Soize (1995) who 
postulated such a model with random stiffness and/or damping ratio following a specific 
distribution and identified its parameters using the variance of the response and/or its 
velocity. Interestingly, these concepts have been generalized to multi-degree-of-freedom 
systems (see Soize and Le Fur, 1997, and Bellizzi and Bouc, 1999). 
 
In light of these successes, the goal of this paper is to revisit the connections between the 
power spectrum and the distribution of random frequencies and to propose and validate a 
new parametric probability density function of these random variables for the Duffing 
oscillator.  
 
Representation of the Power Spectrum of the Duffing Oscillator Response 
 
Proceeding with appropriate normalizations (e.g. see Bouc, 1994), the general governing 
equation of a Duffing oscillator can be rewritten in the compact form 
 ( )tWXXXX ζ=λ++ζ+ 42 3  (1) 
where ζ  is the damping ratio in the linearized system, λ  is a measure of the nonlinearity, 
and ( )tW  is a white noise process of power spectral density 1/2π. Situations in which the 
white noise power is different from 1/2π can be recast in the form of Eq. (1) by scaling 
the process ( )tX  by the standard deviation of the response of the linearized system. This 
transformation modifies the value of λ and thus demonstrates that this parameter is a 
function of the actual nonlinearity strength but also the excitation level. 
Following previous investigators, the power spectrum of the response ( )tX  will be 
represented as 

 ( )
( )

( ) dkkp
k

S KXX ∫
∞

ωζ+−ω

ζ
π

=ω
0 2222 4

4
2
1  (2) 

where ( )kpK  denotes the probability density function of the random stiffnesses. In fact, 
the right-hand-side of Eq. (2) can be viewed as the expectation of the conditional 
spectrum, given K = k, of the random stiffness linear single-degree-of-freedom system 
 ( )tWYKYY ζ=+ζ+ 42 . (3) 
In  the  limit of a zero damping ratio, it is found from Eq. (2) that 
 ( ) ( )ωω=ωΩ XXSp 22      0≥ω  (4a) 

where 2Ω=K and, in parallel, from Eq. (3) 
 ( ) ( ) ( )Φ+Ω=≈ tatYtX cos  (4b) 
with appropriate amplitude a and random phase Φ . Equations (4) provide a simple 
representation of the response process consistent with the random frequency simulation 
algorithm (see Goto and Toki, 1969, and Shinozuka, 1971). 
 
For nonzero damping ratios, Bouc (1994) proceeded with a stochastic averaging strategy 
and obtained a representation of the power spectrum similar to Eq. (2) but expressed in 
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terms of the distribution of the amplitude of the process ( )tX . His solution can be recast 
in the form of Eq. (2) with 

 ( ) ( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

λ

−
−−−=

10
13

exp113
2k

kkkBkp B
K    1≥k  (5) 

where B is the appropriate normalization constant. The power spectral density obtained 
from Eq. (5) and from a thorough Monte Carlo simulation of Eq. (1) are shown in Fig. 
1(a) for λ = 10 and ζ = 0.01. Note the excellent matching of these two curves. For 
completeness, the corresponding probability density function of the stiffnesses is also 
shown in Fig. 1(b) 
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Figure 1. (a) Power spectral density and (b) probability density function of stiffnesses for the 
Duffing oscillator for λ = 10 and ζ = 0.01. “MC”: Monte Carlo simulations, “Bouc”: from Bouc 
(1994), “Eq. (2), (7)”: Using Eq. (2) and (7) with the parameters a and b evaluated from the 

variance, mean stiffness, and moment equation conditions. “Eq. (2), (7) Opt”: Using Eq. (2) and 
(7) with the parameters a and b evaluated from an optimum match of the MC spectrum 

 
Soize (1995) proceeded differently and postulated a parametric distribution of the 
stiffnesses as 

 ( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−−= 2

21exp1
b

kkkCkpS
K     1≥k  (6) 

where C is a normalization constant and the coefficient b is selected so that the variance 
of the process ( )tX  predicted from Eq. (2) matches its exact value. Note that a good 
qualitative agreement with the Monte Carlo simulation results was achieved but the 
accuracy of the matching/prediction is nevertheless limited by the presence of only 1 
adjustable parameter. 
 
To palliate this situation, the following 2 parameter model 

 ( ) ( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−−λ+= 2

2
exp11

b
akkkDkpK     1≥k  (7) 

is introduced here where D is the appropriate normalization constant. As a first 
verification of the adequacy of the model, an optimization effort was undertaken in which 
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the parameters a and b were selected to obtain the closest matching of the power spectral 
densities obtained from Eq. (2) and (7) and from Monte Carlo simulations. The 
corresponding optimum distribution of stiffnesses and the corresponding approximation 
of the power spectrum are also shown in Fig. 1. Note in particular the excellent matching 
of the simulated power spectrum by its approximation from Eq. (2) which supports the 
validity of the parametric distribution of Eq. (7). 
 
Estimation of the Distribution Parameters 
 
Having validated the adequacy of the distribution of Eq. (7), it remains to devise a 
strategy for the evaluation of its two parameters a and b from basic information about the 
process. To this end, three different conditions will now be described. 
 
Variance Conditions 
Proceeding as Soize (1995), it is first required that the approximate power spectral 
density of Eq. (2) yields variances of the displacement process and of its velocity that are 
equal to their exact values which can be predicted from the stationary probability density 
function. Equivalently, it is required that 

 ( ) 2
XXX dS σ=ωω∫

∞

∞−

    and   ( ) 122 =σ=ωωω∫
∞

∞−
XXX dS  (8) 

Using the properties of the spectrum of linear single-degree-of-freedom systems, it is 
readily shown that the second condition is automatically satisfied while the second one 
can be rewritten simply as 

 21
XK

E σ=⎥⎦
⎤

⎢⎣
⎡ . (9) 
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Figure 2. Mean stiffness predicted from the Bouc (1994) and 

Soize (1995) models and equivalent linear stiffness 

 
Mean Stiffness Condition 
Since only one variance condition can be used to estimate the two model parameters, 
additional constraints must be sought. To this end, the distribution of the random stiffness 
corresponding to the Bouc model, i.e. Eq. (5), was investigated and its moments were 
evaluated. The mean stiffness, [ ]KE , was of particular interest as it provides an overall, 
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deterministic measure of the stiffness of the random coefficient system of Eq. (3). In that 
light, it was more specifically desired to compare the values of this mean stiffness and of 
the deterministic stiffness obtained from the equivalent linearization technique (Roberts 
and Spanos, 1991). These two quantities were evaluated over a broad range of values of 
the nonlinearity parameter λ and a remarkable agreement between them was obtained 
throughout, see Fig. 2. This finding thus suggests that the equivalent linearization 
technique can be viewed as a simplified case of the random parameter model of Eq. (2) in 
which the distribution of the stiffnesses is simply a Dirac delta function. 
 
Moment Equation Condition 
The use of the variance and mean stiffness conditions alone for the determination of the 
two parameters a and b of the distribution of stiffness did not provide a matching of the 
approximate (Eq. (2)) and simulated power spectra as good as could be expected from 
Fig. 1. Accordingly, a third condition that involves more directly the dynamics of the 
Duffing oscillator was sought. One such condition is the moment equation 
 [ ] [ ] [ ] 0422 =λ++− XEXEXE  (10) 

which however involves the fourth order moment [ ]4XE  and thus requires a more 
detailed model than Eq. (2). 
 
A conditional approach similar in spirit to the one of Bouc (1994) will be followed by 
assuming that the value of the stiffness K is fixed, i.e. kK = . Then, two possible 
approximation strategies can be devised. First, it can be argued that the motion 
corresponding to a fixed frequency/stiffness must be close to harmonic with a slowly 
varying amplitude A and frequency Ω. Then, it is found that 

              [ ] [ ]222
2
1

Ω= AEXE  ,       [ ] [ ]22
2
1 AEXE = ,     and [ ] [ ]44

8
3 AEXE =  (11) 

Combining Eq. (10) and (11) yields 

 0
4
31 222 =⎥
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⎢
⎣

⎡
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⎜
⎝
⎛ λ−−Ω AAE  (12) 

This equation is in particular satisfied if the amplitude A is defined according to 

 22
4
31 Aλ+=Ω  or ( )1

3
4 22 −Ω
λ

=A  (13) 

Reintroducing this expression for the amplitude in Eq. (11) yields for the variances of the 
displacement and velocity 

 [ ] [ ] ( )[ ] ⎥⎦
⎤

⎢⎣
⎡=−Ω

λ
==

K
EEAEXE 11

3
2

2
1 222  (14a) 

 [ ] [ ] ( )[ ] 11
3
2

2
1 22222 =−ΩΩ

λ
=Ω= EAEXE . (14b) 

where the last equalities of Eq. (14a) and (14b) originate from Eq. (8) and (9). 
Considering 2Ω  to be a  function of K (one would expect K=Ω2 ), Eq. (14a) and (14b) 
imply the following equalities 
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 ( ) ( ) ( ) dkkp
k

dp K
11

3
2 222

2 =ωω−ω
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λ Ω

2222
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3
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The above equations yield directly  
 k=ω2  (16a) 
 as expected, and in turn the condition 

 ( ) ( ) ( )kp
kk

p K1
1

2
32

2
−

λ
=ωΩ  (16b) 

which is however not consistent with Eq. (16a). Since Eq. (14) were only the integrated 
versions of Eq. (15), it is suggested here that it is sufficient to satisfy Eq. (16b) overall, 
i.e. 

 ( ) 1
1

1
2

3
=⎥

⎦

⎤
⎢
⎣

⎡
−

λ
KK

E . (17) 

 
A different condition can be obtained from Eq. (10) by relying on the conditionally 
Gaussian character of the solution of Eq. (3) given kK =Ω= 2 . With this assumption, 
Eq. (10) becomes 

 131
2 =⎥⎦

⎤
⎢⎣

⎡ λ
+

KK
E . (18) 
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Figure 3. (a) Power spectral density for the Duffing oscillator for λ = 1 and ζ = 0.01. “MC”: Monte 
Carlo simulations, “Bouc”: from Bouc (1994), “Eq. (2), (7)”: Using Eq. (2) and (7) with the 
parameters a and b evaluated from the variance, mean stiffness, and moment equation 
conditions. “Eq. (2), (7) Opt”: Using Eq. (2) and (7) with the parameters a and b evaluated from an 
optimum match of the MC spectrum. (b) Values of the parameters a2 and b2 vs. λ. 
 
Numerical Results 
To assess the reliability of the parameter estimation procedure, the Duffing oscillator 
with λ = 10 and ζ = 0.01 was reconsidered and the exact variance of the displacement 
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X(t) was used in Eq. (9). Further, the mean stiffness and moment equation conditions (Eq. 
(17)) were also enforced and the parameters a and b of the model of Eq. (7) were selected 
as to best fit all three conditions. This process yielded the approximate power spectrum 
also shown in Fig. 1(a). Clearly, an excellent matching of the simulation results is 
achieved. In fact, an excellent matching was obtained throughout the range 0>λ , see 
also Fig. 3(a) for λ = 1. For values λ ≤ 1, the optimization process was achieved under 
the additional physical constraint a > 1. For completeness, the dependence of the 
coefficients a and b on λ is displayed in Fig. 3(b). Note in particular that 2a  and  2b  
display an almost linear behavior with respect to λ throughout the entire range of values 
of this parameter. 
 
Summary 
 
The focus of this paper has been on the simple and reliable prediction of the power 
spectral density of the response of the Duffing oscillator. The representation of its 
response in terms of the response of a linear single-degree-of-freedom with random 
stiffness provides an excellent format for the modeling of its power spectral density as an 
expectation, see Eq. (2). In this light, the contributions of the present effort can be 
summarized as follows. 
 

(1) A revisit of existing models has led to the observation that the mean of the 
distribution of the random stiffnesses agrees very closely with the equivalent linear 
stiffness obtained by the equivalent linearization technique. 

 

(2) A novel two-parameter probability density function of the random stiffnesses has 
been proposed which was shown to have the flexibility to yield an accurate 
representation of the power spectrum of the Duffing oscillator for a broad class of 
nonlinearity strength. 

 

(3) An identification procedure of the two parameters of the model was developed that 
relies on three conditions: the matching of the exact variance of the response, the 
matching of the mean stiffness with the equivalent linear stiffness, and the 
satisfaction of a moment equation. 

 

(4) Numerical examples have demonstrated that both the model and the identification 
strategy of the parameters lead to an excellent agreement between the predicted 
power spectrum and the one obtained from Monte Carlo simulations. 

 

(5) It was observed that the coefficients of the model exhibit a very simple relationship 
with respect to the nonlinearity parameter λ, i.e. their squares are almost linear 
functions of λ. 
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ABSTRACT:  The focus of this investigation is on the prediction of the fatigue life of aircraft panels 
subjected to thermal effects and a severe random acoustic excitation. The prototypical equations for 
this problem, i.e. the single and double well Duffing oscillators subjected to a bandlimited white 
noise, are first considered. A review of some currently available approaches, i.e. the Rayleigh ap-
proximation and the single spectral moment method both with and without Gaussianity correction, 
strongly suggests that an accurate prediction of the fatigue life for this nonlinear system requires a 
dedicated model. To this end, an approximation of the probability density function of the peaks of the 
stationary response of the Duffing oscillators is derived. This model is then used in conjunction with 
either a narrowband assumption or the single spectral moment methodology to yield a prediction of 
the fatigue life. The application of this approach to simulation data from both single and double well 
Duffing oscillators, as well as on the experimental response of an unbuckled panel, demonstrates the 
reliability of this novel approximation.  

 

1 INTRODUCTION 

The accurate prediction of the fatigue life of air-
craft panels can represent a particularly challeng-
ing task, especially for the proposed supersonic 
and hypersonic vehicles such as the X-43 and 
Hyper-X. Indeed, the panels of these aircraft will 
be subjected to especially harsh operating condi-
tions, e.g. surface temperatures possibly exceed-
ing 3000oF [1] and severe random acoustic load-
ing from the engine exhaust. In normal operating 
conditions, thermal protection systems are ex-
pected to dramatically mitigate the thermal ef-
fects, i.e. reducing the temperature to a few hun-
dred degrees, and thus should prevent the 
buckling of the panels that would otherwise take 
place. 
 
While the acoustic loading may be sufficient to 
induce large motions of the panel in normal con-
ditions, a strong nonlinearity of the response 

would result in the event of a malfunction of the 
thermal protection system. Indeed, the panels 
would then be expected to buckle and the acoustic 
excitation would induce “snap-throughs”, i.e. 
large amplitude motions from one buckled posi-
tion to another. To these snap-thoughs are associ-
ated high amplitude stress cycles producing a 
dramatic reduction in the fatigue life of the pan-
els. 
 
The previous investigations of this problem have 
primarily focused on the important physical de-
scription and prediction of the panel response (see 
[2]-[6] and references therein) with some efforts 
extending to the assessment of the fatigue life, 
e.g. [3], [7]. Given the importance of the problem, 
however, it would be very desirable to dispose of 
a general framework for the prediction of the fa-
tigue life of buckled and unbuckled panels sub-
jected to a random acoustic loading from a speci-
fied finite element model of the panels. The 
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present effort focuses on a specific component of 
the above framework, i.e. the modeling of the 
damage accumulation process and, more specifi-
cally, on relating the fatigue life to certain charac-
teristics (e.g. moments, spectral moments) of the 
response process. This goal will be achieved 
through first the analysis of a prototypical single-
degree-of-freedom system and next the validation 
of the obtained model on test data. 

2 THE PROTOTYPICAL MODEL 

It has been shown (e.g., [2]), that the response of 
heated panels subjected to a transverse loading 
can be modeled by the dimensionless Duffing 
equation 

( ) ( )tppqqsqq +=γ+−ω+ωζ+ 0
32

00 12  (1) 

where 0ω  is the natural frequency of the panel in 
small motions around its unheated undeformed 
state and s is the ratio of the average panel tem-
perature to its buckling temperature. Further, ζ  
denotes the damping ratio of the panel and γ  the 
nonlinear stiffening coefficient arising from the 
large deformations (including membrane effects). 
Finally, the loading is characterized by the con-
stant term 0p  modeling the effects of the thermal 
moments (if the panel and/or the temperature dis-
tribution are not symmetric) and the random 
process )(tp  representing the acoustic excitation. 
 
Once the panel displacement q(t) has been deter-
mined,  the stresses can be evaluated by the quad-
ratic, memoryless transformation 

2
210 qCqCCS ++=  (2) 

where 0C , 1C , and 2C  are constant coefficients 
that depend on the stress and the location on the 
panel considered. 
 
To distinguish the specific issues associated with 
the nonlinearity of the dynamics of the system, 
i.e. γ , from those relevant to the nonlinearity of 
the stress-displacement relation, i.e. 2C , the spe-
cial case 2C  = 0 was considered in the simulation 

studies. The fatigue life estimated from the stress 
and displacement time histories only differ by a 
scaling factor. Thus, it is sufficient to only con-
sider the displacement ranges for the comparison 
investigated here. 
 
The response of the system of Eq. (1) exhibits two 
different asymptotic behaviors for buckled panels 
with two buckled states, e.g. s > 1 and 0p = 0. 
Specifically, at low excitation (sound pressure) 
levels, the system primarily vibrates around each 
of the buckled states with an occasional transition 
from one state to the other. However, at severe 
excitation levels, the situation of interest here, the 
panel experiences very frequent snap-throughs 
and the response is fully nonlinear. Finally, a 
small transition region exists between these two 
limiting cases. For unbuckled panels, the response 
evolves slowly from that of a linear system to a 
fully nonlinear response similar to the one ob-
tained for buckled panels. 

3       ASSESSMENT OF THE RAYLEIGH 
METHOD AND THE SINGLE MOMENT 
APPROACH 

The Rayleigh formula provides an estimate of the 
damage accumulated over a time T by assuming: 
 

(i) that the random process is Gaussian, and 
 

(ii) that the random process is narrowband. 
 

These two assumptions imply that the peak-to-
peak ranges are distributed according to a 
Rayleigh distribution exhibiting a standard devia-
tion equal to twice the standard deviation of the 
stress process. Further, the narrowbandedness 
leads to a simple estimate of the time interval 
over which the stress ranges take place, and thus 
ultimately of the number of cycles present in the 
time interval T. Accordingly, it is found that the 
expected accumulated damage can be expressed 
as 
[ ] ( ) ( )KTmDE m

SS
m πσσ+Γ= − 2/2/12 12/3  (3) 

where Sσ  and Sσ  are the standard deviations of 
the stress process and its time derivative and m 
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and K are the exponent and coefficient of the S-N 
curve, respectively. 
 
To account for the expected deviations from the 
Gaussian assumption, (i) above, the correction 
factor proposed by Winterstein [8] has been con-
sidered. Specifically, the expected damage of Eq. 
(3) is divided by Gaussianity Ratio (GR) defined 
as 

( ) ( ) 24/311 4 −κ−−= mmGR    for  34 <κ  (4a) 
and 

( ) ( )[ ] 1
4 24/311 −−κ−+= mmGR for 34 >κ  (4b) 

where 4κ  denotes the coefficient of kurtosis of 
the stress process. 
 
The single moment approach [9] was proposed for 
situations in which the process would be some-
what broadband and/or exhibits several narrow 
bands. The expected damage accumulated over a 
time T was postulated in the form of 
[ ] ( ) cTDE b

a /−λ=  (5) 
where aλ  denotes the spectral moment of order a 
of the stress process, i.e. 

( ) ωωω=λ ∫
+∞

∞−
dS a

SSa  (6) 

where ( )ωSSS  is the power spectral density of the 
stress process. Using dimensional analysis, it is 
concluded that the coefficients a and b must be 
given as 

ma /2=         2/mb −=  . (7) 
 
Finally, the scaling coefficient c is determined so 
that the estimate of Eq. (5) reduces to a “stan-
dard” reference. For example, in connection with 
Gaussian processes, the reference is the narrow-
band limit and thus the moment estimate should 
reduce to the Rayleigh formula of Eq. (3). Then, 

( )[ ]2/12/2 2/3 mKcc m
Narr +Γπ== . (8a) 

When taking the nonlinearity into account, the 
standard reference should be the non-Gaussian 
narrowband limit and thus, Eq. (5) should con-
verge to the Rayleigh estimate divided by the GR 
factor. Thus, one would obtain a different value of 
the coefficient c, namely 

( )[ ]2/12/2 2/3 mGRKcc m
GR +Γπ== . (8b) 

To assess the reliability of these different esti-
mates, a   titanium  panel  was  selected  with  di-
mensions    a = 0.508 m, b = 0.208 m, h = 
0.001524 m, and material constants 

Pa101.1 11×=E , 34.0=v , and 3kg/m4520=ρ  
for which 67.140 =ω  and 532.769=γ . The tem-
perature field considered was such that s = 1.8 and 

0p  = 0. Further, the acoustic loading was modeled as a 
[ ]bb ff ,−  bandlimited white noise of power spectral 
density ( ) 10/2

00 102/ SPLpS π=  where 0p  = 2 10-

5 Pa is the reference pressure and SPL denotes the 
sound pressure level in dB based on the reference 
cut-off frequency of 2π. A dimensionless time 
step of 1.7×10-3 was adopted to solve Eq. (1). 
This choice implied a physical cut-off fre-
quency =bf 2.5937×104 Hz. Accordingly, the 
overall sound pressure level (OASPL) can be ob-
tained as OASPL = SPL+ 10 bflog  where 10 

bflog  = 44 dB. Note finally that the power spec-
tral density of the dimensionless pressure p  is 

( )
θ

−
⎟
⎠
⎞

⎜
⎝
⎛
π

= 0
2

228 164 S
E
v

h
bS PP ; 

( )
2

4

4

2112
Eh

bv ρ

π

−
=θ  (9) 

 

It was found that the corresponding low to high 
SPL transition zone extends upwards of 114 dB 
(or 158 dB overall SPL) to approximately 134 dB. 
Thus, the reliability of the Rayleigh and single 
moment estimates was carried out in the domain 

[ ]154,124∈SPL  dB and for [ ]8,1∈m  by com-
parison with rainflow analyses [10]. Shown in 
Fig. 1 are the relative errors on the accumulated 
damage corresponding to the Rayleigh, Rayleigh 
with GR correction, single moment (Eq. (8a)), and 
single moment with GR correction (Eq. (8b)).  
 
Several observations can be drawn from the 
above figures. First, all errors are very small for m 
= 1 as is expected since every damage prediction 
formula considered recovers the exact solution 
[ ] ( )KTDE S πσ 2/= . (10) 
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Next, a comparison of Fig. 1 readily indicates that 
the Rayleigh formula largely overestimates the 
damage for large S-N power exponent. The single 
moment method provides a definite improvement 
over the Rayleigh formula, but its error still rap-
idly grows with the exponent of the S-N curve. 
The GR correction factor for the Rayleigh for-
mula and single moment approach provides a 
substantial improvement in damage estimate, but 
the errors are still too large to be considered satis-
factory. 
 
It should finally be noted that the behavior of all 
four errors appears to converge, for any fixed 
value of m, as the sound pressure level increases 
from 124 dB to 154dB thereby suggesting that 
there exists a common behavior in the high SPL 
domain.  
 
The unbuckled situation, s<1, is also of great in-
terest as it usually represents the design condition 
of the panel. To assess the differences in reliabil-
ity of the four methods for the unbuckled case, the 
comparisons of Fig. 1 were repeated for s = 0, see 
Fig. 2. For the lowest SPL (124 dB), there is a 
marked improvement over the s = 1.8 case of the 
damage estimates obtained by the Rayleigh and 
single moment methods with or without the Gaus-
sianity ratio, probably due to the mild nonlinearity 
present. At the two highest SPL (144 dB and 154 
dB) however, the curves corresponding to s = 0 
and s = 1.8 are almost identical thereby suggest-
ing that the damage becomes only weakly de-
pendent on the temperature or state (buckled or 
unbuckled) of the panel. 
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Figure 1. Relative error on the prediction of the ex-
pected damage as a function of the S-N exponent m 
for different SPL and different methods (“Ray” = 
Rayleigh, “SM” = Single Moment, “GR” = with 
Gaussianity Ratio), s = 1.8. 
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Figure 2. Relative error on the prediction of the ex-
pected damage as a function of the S-N exponent m 
for different SPL and different methods (“Ray” = 
Rayleigh, “SM” = Single Moment, “GR” = with 
Gaussianity Ratio), s = 0. 

4 DAMAGE ACCUMULATION PROCESS IN 
THE HIGH SPL REGIME 

The GR correction factor for the Rayleigh for-
mula was derived for a particular class of narrow-
band non-Gaussian processes and thus the sharp 
reduction of error seen in Fig. 1 is somewhat in-
dicative that the response process in the high SPL 
range may be narrowband. If this possibility was 
confirmed, substantial simplifications in the esti-
mation of the accumulated damage would follow, 
even without the Gaussian distribution property. 
For a narrowband process, a cycle will have an 

approximately constant period of ωπ /2  and the 
expected value of the damage can be expressed as 
[ ] ( ) [ ]DETDE ∆πω= 2/  (11) 

where [ ]DE ∆  is the expected damage corre-
sponding to one cycle. This term can be further 
written as 
[ ] [ ] KSEDE m

r /=∆  (12) 

where rS  denotes the stress range process. If the 
probability density function of the response is 
symmetric, as here in the absence of the thermal 
moment term 0p , the narrowbandedness assump-
tion further implies that the stress range is twice 
the peak stress PS  so that 

[ ] [ ] ( )∫
∞

==∆
0

22 dsspsSEDEK
PS

mmm
P

m  (13) 
 

It remains to assess if the response process is in-
deed narrowband. A first perspective of the poten-
tial narrowbandedness can be obtained from the 
power spectral densities of the process which are 
shown in Fig. 3 for the 124-154 dB sound pres-
sure levels and s = 1.8. It appears from this figure 
that the response exhibits a single dominant peak 
which is not particularly narrow: if these spectra 
corresponded to a single-degree-of-freedom sys-
tem, the corresponding damping ratios would be 
between 21% and 26% as estimated by the half-
power bandwidth technique. Further, note the 
presence of a peak of the spectrum near the zero 
frequency for the 124 dB and, to a lesser extent, 
the 134 dB excitations. 
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Figure 3. Response power spectral density for differ-
ent SPL and s = 1.8 
 
It is unclear if these results validate or invalidate 
the narrowbandedness assumption of the stress 
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ranges. Certainly, it could be argued that the 
Rayleigh formula requires a correction factor for 
single-degree-of-freedom systems with damping 
ratios similar to the 21%-26% observed here (see 
[11]). Ultimately, however, it is not the spectrum 
which is relevant to the damage accumulation 
process. In fact, from Eq. (11) and (12), it is seen 
that a better check of the narrowbandedness re-
quires the assessment of the frequencies at which 
the stress ranges occur. To this end, the simula-
tion data was revisited and the stress ranges were 
recorded together with the time (or half-period) 
needed to achieve these stress ranges. This infor-
mation led to the probability density functions of 
half-periods  shown in Fig. 4 which do support 
the narrowbandedness of the stress process, espe-
cially at high SPL. 
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Figure 4. Probability density function of the half-
period for different SPL and s = 1.8. 
 
To fulfill the fatigue estimate, a reliable predic-
tion of the frequency is required. In fact, the fre-
quency of the process can be selected so that the 
damage corresponding to m =1 equals the 
Rayleigh value. That is, 

⎥⎦
⎤

⎢⎣
⎡σπ=ω ∫

∞

0 )(2/2 dsps sSS p
. (14) 

5 DISTRIBUTION OF PEAKS AND RANGES 

The above figures have shown the validity of nar-
rowbandedness assumption but it remains to es-
tablish a model for the distribution of the stress 
ranges. To this end, the derivation of the Rayleigh 
distribution in the Gaussian case was revisited. In 
fact, this probability density function stems, in the 
narrowband limit, from the S.O. Rice distribution 

which characterizes the peaks of a stationary 
Gaussian process.  In this light, it appears that the 
prediction of the accumulated damage in the high 
SPL regime necessitates the derivation of the 
equivalent of the Rice distribution for the one-
mode model of Eq. (1). This derivation is accom-
plished below under some weak assumptions. 
 
The probability density function for the peaks of 
an arbitrary stationary process q(t) is given by 

dzzpz/dzzupzup
qqqqq

p ),0(),0,()( ......
00
∫∫ ∞−∞−
/= (15) 

where ( )zvup qqq ,,  is the joint probability density 

function of ( )tq , ( )tq , and ( )tq  and ( )zvp qq ,  is 
similarly defined (see [11]). 
 
When ( )tp  is a white noise process of spectral 
value ppS , ( )tq  is a Gaussian random variable 
with zero mean and variance equal to 

( )02/ ζωπ ppS . Further, the distribution of ( )tq  is 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

π
ωζ

−= )(2exp 0 uG
S

Aup
pp

q  (16) 

where ( ) ( ) 422
00 4

11
2
1 uusupuG γ+−ω+−= (17) 

Considering next the distribution of ( )tq , it is 
noted that this random variable is uncorrelated 
with the velocity ( )tq  as ( ) ( )[ ] 0=tqtqE  under 
stationary assumptions. If one assumes the 
stronger independence of these random variables, 
Eq. (15) becomes 

( )
( )

( )
( )∫

∫

∫
∞−

∞−

∞− ==
0

'0

0

,1
,

dzzupz
B

dzzpz

dzzupz
up qq

q

qq

P (18) 

where ( )∫ ∞−
=

0' dzzpzB q  is simply a nor-

malization constant for the distribution of peaks. 
To obtain a closed form relation similar to the 
Rice distribution, it is necessary to further sim-
plify Eq. (18). This can be accomplished by ex-
pressing the joint probability density function of 
( )tq  and ( )tq  in terms of the marginal distribution 

SPL = 154 dB 

124 dB 

144 dB 

134 dB 



82 

of ( )tq  ( ( )upq , see Eq. (16)) and the conditional 

distribution of ( )tq  given ( )tq , ( )( )utqzpq =| . 
That is, 

( ) ( ) ( )( )utqzpupzup qqqq == |,  (19) 
 
Note further that the knowledge of the value of 
q(t) = u does not affect the distribution of either 
the velocity ( )tq  or the white noise excitation 
( )tp  since these two random variables are both 

independent of q(t). The independence of q(t) and 
( )tp  arises from the second order dynamics of the 

panel, ( )tp  instantaneously affects only ( )tq  and 
( )tq , the response q(t) involves only the values of 
( )tp  in the past, i.e. τ < t. With these independ-

ence properties and the equation of motion (1), 
( )tq  given q(t) = u can be written as 

( ) )(2 0 ugqtpq +ωζ−=  (20) 
where 
( ) ( ) 32

00 1 uuspug γ−−ω−= . (21) 
Since ( )tp  and ( )tq  are both Gaussian, one could 
assume them to be jointly Gaussian. Then, the 
distribution of ( )tq  given q(t) = u is seen from 
Eq. (20) to be Gaussian with mean 

)(* ug=µ  (22) 
and variance 

( )[ ] 22
0

222
0

2
* 42 qpqpE σωζσωζσ −=−=  (23) 

where 2
pσ  is the variance of the white noise proc-

ess ( )tp . If this process is truly white, i.e. in-
cludes all frequency up to infinity equally, then 

∞=σ2
p . However, this situation is only a con-

venient model, physical process does not exhibit a 
zero length correlation and thus have a cut-off 
frequency bω  about which little energy exists. In 
such bandlimited (or clipped) white noise cases, 

bppp S ω=σ 22 . In computational efforts, bω  is 
likely to be dictated by the time step with which 
the equations of motion are integrated while, in 
experimental efforts, this quantity will be related 
to the sampling time of the response process. 
With the above assumptions, it is finally found 
that 

( ) ( )

⎭
⎬
⎫
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ

−Φπ−

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

σ
−σ=

*

2
*

2
*

)()(2

2
)(exp

ugug

ugupBup qP

(24) 

where ( )zΦ  denotes the cumulative distribution 
function of a standard Gaussian random variable. 
 
Note the very strong parallel between Eq. (24) 
and the Rice distribution, which is recovered for 
( ) uug = . Indeed, the probability density function 

of Eq. (24) involves primarily two components, 
i.e. those corresponding to the two terms in 
brackets. While the parameter *σ  may still be re-
lated to a measure of bandwidth in the process, as 
done in connection with the Rice distribution, a 
different interpretation of the two terms will be 
sought here.  
 
Specifically, note first that the terms [ ]2

*
2

* 2/)(exp σ−σ ug  and ( )*/)()( σ−Φ ugug  
exhibit very different behaviors. The first ex-
pression is maximum at the buckled states of the 
panel, i.e. at the values iQ  such that ( ) 0=iQg  
and rapidly decreases away from these locations. 
On the contrary, the second term vanishes there 
and increases monotonically for iQu > . In fact, 
a plot of these expressions reveals that they may 
only have a very small intersection. Physically, 
the first term of Eq. (24) is associated with the 
motions around and in between the bottom and 
top buckled states, respectively, while the single 
peak of the second term corresponds to the snap-
throughs with excursion exceeding, sometimes 
significantly, the buckled states. 
 
The use of Eq. (24) or a similar distribution of the 
peaks for the prediction of the probability density 
function of the ranges must accomplished care-
fully: the peaks near the buckled states tend to be 
associated with valleys situated in the same 
neighborhood and thus create small ranges. On 
the contrary, the peaks corresponding to snap-
throughs lead to ranges equal to twice the peak 
excursion. When the peaks of the distribution are 
clearly separated as is the case in the high SPL re-
gime, the peak distribution can be used to produce 
an approximate probability density function of the 
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ranges. In the low SPL regime, the snap-throughs 
occur very rarely and the rightmost peak is of 
negligible magnitude, the Rayleigh approximation 
is then fully appropriate. In the transition zone, 
however, both terms interact and a careful analy-
sis must be undertaken. 
 
Since the focus of the present effort is on the high 
SPL regime only, it can be assumed that the peaks 
of the distribution of peak values are well sepa-
rated and that the ranges occurring in the 
neighborhood of the buckled states have a negli-
gible effect on the accumulated damage. Then, 
the first term in the bracket of Eq. (24) can be ne-
glected and the values of |g(u)| will be assumed 
large enough so that ( ) 1/)( * ≈−Φ σug . Then, 
one obtains the following approximate probability 
density function of the ranges 

( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

π
ωζ

−= 2/
2

exp2/ 0 zG
S

zgBzp
pp

Sr
 (25) 

which is defined in [ )∞∈ ,2 1Qz  and the coeffi-
cient B should be selected so that the integral of 

( )zp
rS  over that interval equals 1. The range of 

values of z does not extend below 12 Q  since 
( )zp

rS  is negative there. 
 

The assessment of the reliability of this approxi-
mation of the exact ranges was done in two ways. 
First, the distribution of the ranges obtained by 
simulation was fitted to the approximation of Eq. 
(25). In this fitting, the coefficient B was selected 
so that the simulated and approximate distribu-
tions share the same peak value. As expected, the 
matching between these two curves is excellent at 
very high sound pressure levels, see Fig. 5 for 
SPL = 154 dB and slowly degrades as the excita-
tion strength approaches the transition zone. 

 
The second assessment was performed directly on 
the estimated accumulated damage by introducing 
Eq. (25) in Eq. (11)-(13). The frequency ω  was 
selected from Eq. (14) so that the accumulated 
damage predicted for m = 1 from Eq. (11)-(13) 
with Eq. (25) matched exactly the value of Eq. 
(10). Shown in Fig. 6 are the errors of the accu-
mulated damage predicted in this manner. 

Clearly, the results are excellent in the high SPL 
range. 
 
Note that Eq. (25) can be viewed as a 3-parameter 
model for the fatigue life prediction as it is neces-
sary to evaluate 0

2 2/ ωζπ=σ ppq S , ( )s−ω 12
0 , 

and γ . For the one mode approximation of Eq. 
(1), expressions for these parameters are be de-
rived easily (see [1]) but their evaluation in con-
nection with a full finite element representation 
and/or a reduced model thereof may not be as 
straightforward. 
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Figure 5. Probability density function of the stress 
ranges and its approximation by Eq. (25) (“Model”), 
Eq. (26) (“Model-s=1”), and Eq. (27) (“2p-Model”), 
for s = 1.8, SPL = 154dB. 
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Figure 6. Relative error on the prediction of the ex-
pected damage as a function of the S-N exponent m 
for different SPL, 3-parameter model, Eq. (25), s = 
1.8. 
 
A 2-parameter model of the damage would be 
preferable as its coefficients could be evaluated 
from the standard deviations of the displacement 
and the velocity. 
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Having established and validated the model of Eq. 
(25), additional simplifications of it were then 
pursued. To this end, it was first argued that the 
effects of a nonzero value of 0p  would be negli-
gible in the very high SPL regime, although this 
parameter should play an important role at lower 
excitation levels through the asymmetry of the 
buckling states it creates. Next, it was found that 
the ( )s−ω 12

0  terms in Eq. (25) were typically 
much smaller than their γ  related counterparts for 
the ranges z observed in the high SPL regime. 
Equivalently, it appeared that the distribution of 
ranges and the accumulated damages correspond-
ing to s = 1 and s = 1.8 should converge to each 
other as the sound pressure level is increased. 
This expectation is confirmed by the “Model - s = 
1” curves of Fig. 5 but the reliability of this ap-
proximation at SPL values 134 dB was not found 
encouraging. 

 
In fact, a direct comparison of the s = 1 and s = 
1.8 results is not fully appropriate as the corre-
sponding response processes have different stan-
dard deviations qσ . A more relevant check of the 
2-parameter corresponding to Eq. (25) with its s = 
1 and 00 =p  counterpart, i.e. 

( ) ( )[ ]24 4/exp qq uBup σγ−′=  (26) 
would thus be achieved by selecting γ so that the 
standard deviation of the response with s = 1 be 
equal to that of s = 1.8 with the original γ. After 
some algebraic manipulations, it was found that 

( )42 188.2/ qq σσ≈γ . (27) 
 

It is clearly seen from Fig. 5 that the approximate 
probability density function of the ranges is very 
well matched by using the value of γ given by Eq. 
(27) as opposed to the original one (compare the 
matching of the simulation data by the “Model - s 
= 1” and “2p-Model” curves). 
 
How about the predicted damage? After obtaining 
expressions for the mth moment [ ]m

rSE  appear-
ing in Eq. (12) and forcing again the frequency of 

the process to be such that the Rayleigh formula 
is recovered for m = 1, it was finally found that 

[ ] ( )
( ) [ ] )1(4402.3

25.1
4/1

2
−σ

Γ
+Γ

π

σ
= m

q
finq m
K

T
DE (28) 

The relative difference between the accumulated 
damage produced by this formula and obtained by 
the rainflow analysis is shown in Fig. 1 and 2 for 
the SPL of 124 dB - 154 dB for s = 1.8, respec-
tively. By comparison with Fig. 6, it is seen that 
the 2-p model (Eq. (28)) is not as accurate as the 
model of Eq. (25) but it reaches somewhat similar 
levels of accuracy as the Rayleigh formula and 
the single moment method corrected by the GR 
factor. In fact, the error of the 2-parameter model 
is significantly less than for these two methods for 
the 144 dB and 154 dB excitations but higher for 
the 124 dB and 134 dB cases. Note however that 
Eq. (28) does not require the difficult evaluation 
of the coefficient of kurtosis. 
 
Could the model be further improved without 
needing a third parameter? A re-inspection of the 
power spectral densities of Fig. 3 has demon-
strated that the peak bandwidth narrows slightly 
but steadily as the sound pressure level is in-
creased above the transition zone. For example, at 
134 dB, the width of the peak is equivalent to that 
of a single-degree-of-freedom system with 25.9% 
damping but the equivalent damping ratio at 144 
dB and 154 dB is 23.6% and 22.0%, respectively. 
In this light, the lack of accuracy of the 2-p 
model, Eq. (28), could either be attributed to the 
role of the ( )s−ω 12

0  terms or to an increase 
bandwidth of the peak. With the latter interpreta-
tion, Eq. (28) only requires a bandwidth correc-
tion such as that provided by the single moment 
method. 
 
Accordingly, a version of this method was formu-
lated that reduces not to the Rayleigh formula but 
rather to Eq. (28) when the process becomes per-
fectly narrowband. Proceeding as above yields the 
accumulated damage predictor of Eq. (5) with the 
coefficients a and b still given by Eq. (7) but the 
parameter c must then be selected as 
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( )
( ) [ ] )1(29068.0

4/1
25.12 −

+Γ
Γ

π= m
NL m

Kc  (29) 

 
To assess the validity and reliability of this last 
approach, the error in the prediction of the accu-
mulated damage was evaluated as a function of m 
for the four levels of sound pressure levels of 124 
dB, 134 dB, 144 dB, and 154 dB. The results of 
this study are also shown in Fig. 1 and 2 for s = 
1.8 and 0, respectively. Comparing the various re-
sults presented in these figures, it is seen that this 
estimate is almost everywhere more accurate than 
either the Rayleigh with the GR factor and the 
single moment with the GR factor. Further, Eq. 
(29) is generally at least as accurate as its 2-
parameter counterpart Eq. (28). On this basis, it is 
suggested that the modified, non-linear single 
moment estimate of the accumulated damage be 
used when the 3-parameter model is not applica-
ble. 

6 VALIDATION ON EXPERIMENTAL 
DATA 

Having established reliable prediction approaches 
of the accumulated damage in high SPL regimes, 
it was desired to check their validity on experi-
mental measurements. The acoustic testing of a 
clamped composite panel at ambient temperature 
was conducted at the A.F.R.L. The sound pres-
sure level was varied in 8 tests from 152 dB to 
172 dB (overall SPL) and the time varying strain 
at the center of the panel was recorded at a sam-
pling rate of 8,000 samples per second for 60 sec-
onds. 

 
The consideration of this data brought one major 
novel issues with respect to the theoretical work 
carried out before, i.e. only strain measurements 
were obtained so the nonlinearity of the dynamics 
(displacements) could not be separated from the 
nonlinearity of the displacement-strain relation. 
 
The first task was to analyze the response of the 
panel and to assess if it could be analyzed in 
terms of low and/or high SPL regimes. To evalu-
ate the potential linearity of the panel, the stan-

dard deviations of the strain and strain velocity 
were computed and plotted vs. the sound pressure 
level, see Fig. 7. In this log-linear plot, a straight 
line would be representative of linearity. A pre-
liminary analysis of the standard deviation of the 
strain, see Fig. 7, suggested that the panel might 
be in a linear range for the excitation levels of 152 
dB - 161 dB but nonlinearity at the highest SPL 
values was clear. Further, the standard deviation 
of the strain velocity was found to exhibit an ap-
proximately linear behavior. In the one-mode 
model, the velocity is perfectly linear but the 
strain velocity is not owing to the effect of the co-
efficient 2C , in Eq. (2), i.e. 

( )qCCqS 21 2+= . (30) 
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Figure 7. Evolution of the standard deviations of the 
panel strain and strain velocity as functions of sound 
pressure level (SPL), experimental data. 
 
It was thus tentatively concluded from the close 
linearity of the standard deviation of the strain ve-
locity that: 
(i) the effect of the coefficient 2C  is probably 

small  
(ii) the velocity is probably quite linear and thus 

its marginal distribution may be considered 
Gaussian. With this assumption, the Rayleigh 
formula should be exact or close to for m = 1. 
This expectation will be confirmed later. 

 
Notwithstanding this analysis, it was found neces-
sary to devise a test of the validity of both linear-
ity and full nonlinearity (high SPL behavior). 
Considering first the linearity, it was noted that a 
Gaussian response would occur in the small dis-
placements range and thus that the 2C  effect 



86 

would also be small. Thus, linearity of the dis-
placements should also correlate well with linear-
ity of the strains and thus a Gaussian strain distri-
bution would also be expected. Shown in Fig. 8 is 
the evolution of the coefficient of kurtosis of the 
strains as a function of sound pressure level. 
Clearly, these values are away from 3 even at the 
lowest excitation levels: the coefficient of kurtosis 
equals 2.70 at 152 dB. On this basis, it was con-
cluded that the low SPL regime in which the re-
sponse remains close to linear is not seen in this 
experimental data. 
 
A simple test was then sought to validate the ap-
plicability of the high SPL limit analysis of Eq. 
(26)-(29). To this end, it was noted from Eq. (27) 
that the ratio qq σσ /2  is constant when the 2-
parameter model is applicable. The evolution of 
this ratio as a function of the sound pressure level 
was then plotted for the present experimental 
data, see Fig. 8. This figure strongly suggests that 

qq σσ /2  converges to a constant value at the high 
SPL values in agreement with Eq. (27). From 
these two sets of observations, it is concluded that 
the panel is in the transition zone at the lowest ex-
citation levels but reaches the high SPL regime in 
the last 2 or 3 experiments. 
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Figure 8. Evolution of the coefficient of kurtosis and 

qq σσ /2  of the panel strain as functions of sound 

pressure level (SPL), experimental data. 
 
With this perspective, the accumulated damage 
predicted by the Rayleigh formula, the single 
moment method, the Rayleigh formula with GR 
correction, the single moment method with GR 

correction, the 2-parameter model of Eq. (28), and 
the modified single moment method of Eq. (29) 
were compared to the results of a rainflow analy-
sis, see Fig. 9. The observations drawn  from  
these  figures  are  in  close agreement with those 
obtained in connection with the one-mode model. 
First, the Rayleigh formula and single moment 
method typically yield unacceptably large errors 
that increase with SPL and with the exponent m 
approximately monotonically. In fact, it is only 
for m = 1 that the Rayleigh formula may be accu-
rate, as justified above, it leads to errors that 
slowly increase with the sound pressure level 
from 0.2% at 152 dB to 6.9% at 172 dB. Note 
again in this context that the nonlinearity associ-
ated with 2C  was not accounted for in the model-
ing effort leading to Eq. (28) and (29). 
 
Further, the use of the GR correction factor in 
connection with both the Rayleigh formula and 
the single moment method led to a dramatic de-
crease in the damage prediction error. In particu-
lar, the single moment method with the correction 
leads to errors less than 15% at high SPL and al-
most all values of m. Note however the clear 
monotonic (decreasing) trend of the errors as a 
function of sound pressure level. A similar state-
ment can be made for the Rayleigh formula with 
the GR correction factor with the exception that 
the trend is an increase of the errors with SPL. 
Accordingly, it can be expected that these two 
methods will not fair as well at higher excitation 
levels. 
 
The 2-parameter model of Eq. (28) performs par-
ticularly well in the intermediate values of sound 
pressure levels, i.e. between 156 dB and 166 dB, 
but the error starts increasing again above 166 dB. 
This surprising behavior might be a consequence 
of either the increasing role of the membrane 
strain, not included in the model of Eq. (28), 
and/or the bandwidth of the peak. Last but not 
least, the modified single moment method based 
on Eq. (29) performs extremely well and fully ac-
cording to expectations: the errors are largest for 
the lowest sound pressure levels while the panel is 
in the transition zone but errors less than 10% are 
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obtained for almost all cases with SPL > 156 dB! 
Note finally the trend of these errors toward con-
vergence to a constant level which does suggest 
that the physics of the problem is being captured. 
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Figure 9 Relative error on the prediction of the 
expected damage as a function of the S-N exponent m 
for different SPL and different methods, experimental 
data. 

7 SUMMARY 

The focus of this study has been on the prediction 
of the fatigue life of aircraft panels subjected to 
thermoacoustic effects. The reliability of some 
existing prediction strategies, i.e. the Rayleigh 
formula and the single spectral moment method 
both with and without Gaussianity correction, was 
assessed by comparison with rainflow results on 
both simulated data from the one-mode model of 
Eq. (1) and experimentally measured strain time 
histories. It was found that the error in the pre-
dicted accumulated damage over a fixed time was 
extremely large for both the Rayleigh formula and 
the single moment method without the Gaussian-
ity correction. The inclusion of the GR factor led 
however to a dramatic improvement although the 
resulting errors could still be large, see Fig. 1, 2, 
and 9. 

 
A different approach was then undertaken and an 
approximation of the probability density function 
of the peaks of the response of the Duffing system 
of Eq. (1) was obtained, see Eq. (24) and (25) and 
Fig. 5. It was then argued that the response proc-
ess to a severe acoustic excitation could be con-
sidered narrowband, notwithstanding its broad 
peak (see Fig. 3), with a frequency given by Eq. 
(14). The combination of these results provided a 
very reliable damage prediction approach for the 
model of Eq. (1) as seen in Fig. 6. The applicabil-
ity of this approach is however conditional on the 
availability of the parameters 0

2 2/ ωζπ=σ ppq S , 

( )s−ω 12
0 , and γ  some of which may be difficult 

to estimate from a complex finite element model. 
 
To palliate this situation, a simplification of the 
model was then accomplished by neglecting the 
linear stiffening terms in regards to the cubic 
ones. This assumption, which is valid at high re-
sponse levels, led to the simplified probability 
density function of peaks of Eq. (26) and to the 
damage estimate of Eq. (28). Since only two pa-
rameters are present in this model, the knowledge 
of the standard deviations of the response and the 
velocity are sufficient to predict the fatigue life. 

SPL = 155 dB 

SPL = 161 dB 

SPL = 167 dB 

SPL = 172 dB 



88 

Good agreement with rainflow results was ob-
tained with this method for both the simulated and 
test data, see Fig. 1, 2, and 9. 
 
The trend of the errors shown in Fig. 1, 2, and 9 
suggested that the 2-parameter model was slightly 
affected by a bandwidth effect which could be 
corrected by the single moment method. Accord-
ingly, a final model was introduced in the form of 
a single spectral moment estimate, Eq. (5), but 
with the coefficient c selected to match the 2-
parameter estimate in the narrowband limit, see 
Eq. (29). This final damage estimation approach 
matched very well the rainflow results at high re-
sponse levels for both simulated and test data, see 
Fig. 1, 2, and 9. 
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ABSTRACT 

This paper focuses on the formulation and validation 
of a reduced order model for the prediction of the 
response - displacements, stresses, fatigue life - of 
aircraft panels subjected to a severe thermo-acoustic 
loading. The reduced order modeling starts with a 
finite element model from a standard package 
(MSC.NASTRAN) and produces a set of cubic 
nonlinear differential equations which are efficiently 
marched in time. The basis for the representation of 
the displacement field includes transverse deflection 
modes of the linear panel and some associated in-plane 
modes (the dual modes). A partial static condensation 
approach is proposed for the numerically efficient 
integration of the reduced order model governing 
equations. Validation cases demonstrate the accuracy 
of the proposed static condensation and of the good to 
excellent reliability of the reduced order model for the 
prediction of the displacements and stresses of panels 
in the nonlinear range in static and dynamic cases. The 
computational efficiency of the reduced order model 
permits the generation of time histories of stresses 
long enough for the accurate assessment of the fatigue 
life of panels. 

 
INTRODUCTION 

   Sonic fatigue has been recognized as an important 
problem for the design of aircraft panels for at least 
three decades (see the review by Clarkson, 1994) and 
will be of significant concern for the next generation 
launch technology (NGLT) vehicles. Indeed, their 
panels are expected to be subjected to severe acoustic 
excitations, sound pressure levels (SPL) larger than 
150dB emanating for example from the engine 
exhaust, while heated to significant temperatures, 
3000°F has been estimated (see Blevins et al., 1993) 
for similar vehicles without thermal protection system 
(TPS), see Fig. 1. Even with an operational TPS, the 
temperature of the panels may still be high enough to 
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Aerospace Engineering. 
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Aerospace Engineering. 
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notably reduce the effective stiffness of the panels, and 
possibly induce their buckling. Given the critical nature 
of the panels and the dynamic loading they are 
subjected to, the accurate estimation of their fatigue life 
is of paramount importance. Unfortunately, the extreme 
conditions (acoustic and thermal) the panel is subjected 
to render the fatigue life estimation a very difficult task. 
Most notably, the severe acoustic excitation typically 
induces panel responses that exceed the linear range. 
While the nonlinearity is highly beneficial, i.e. it leads 
to significant decreases of the stresses in the panels, it 
unfortunately dramatically increases the complexity of 
the problem, especially in connection with a random 
process modeling of the acoustic excitation. 

 
Figure 1.   Surface Panel Thermal/Acoustic Loading. 

 
Linear random vibration problems, even of very 
complex structures, are generally fairly straightforward 
as the solution procedure closely follows the one 
corresponding to deterministic (non-random) 
excitations, i.e. proceeds using modal analysis 
techniques.  No such correlation exists in the nonlinear 
case and the solution of even the most simple problems, 
e.g. of the response of single-degree-of-freedom 
systems to white noise excitation, may require a 
formidable mathematical arsenal. These general 
observations suggest directly that the structural 
dynamic analysis of aircraft panels subjected to a severe 
acoustic excitation and thermal effects has typically 
been accomplished in one of the following two ways: 
(1) by using a very simplified structural model and 

relying on available exact/approximate solutions of 
the corresponding random vibration problem, or 

(2) proceeding with a Monte Carlo simulation of a 
finite element model of the panel. 
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The work carried out under option (1) has usually 
relied on the approximate representation of the panel 
displacement field through a “single mode model”, i.e. 
as ( ) ( ) ( )zyxtqtzyxs ,,,,, Ψ=  where ( )zyx ,,Ψ  is a pre-
determined vector, typically an approximate/exact 
linear mode shape of the panel, providing the spatial 
characterization of the response and q(t) is a scalar 
random process representing the temporal changes of 
the magnitude of the response. Proceeding in this 
manner leads to Duffing type equations for q(t); i.e. 
the single (resp. double) well equation for unbuckled 
(resp. buckled) panel. Fortunately, an exact solution 
for the probability density function of the response 
exists, in the stationary limit, for the Duffing oscillator 
subjected to a white noise excitation and thus a fairly 
complete analysis of the response can be achieved (see 
for example Ng (1988, 1989), Lee, (1993, 1995, 1997, 
2001), Lee and Wentz (1997), Lee et al. (1998), 
Vaicaitis (1994), Choi and Vaicaitis (1989), Vaicaitis 
and Arnold (1990), Ghazarian and Locke (1995), 
Murphy et al. (1996), Kavallieratos (1992), Sun et al. 
(1998), Chilakamarri and Lee (2000), Chen et al. 
(2000)).  These analyses have provided an excellent 
phenomenological understanding of the response 
properties through the range of sound pressure levels 
and temperatures comparing very favorably with 
experimental results (e.g. Ng (1988, 1989), Lee and 
Wentz (1997), Istenes et al. (1995), Spottswood et al. 
(2000), Spottswood and Wolfe (2001), and 
Spottswood and Mignolet (2002)). 
 
The weakness of single-mode analyses is, as expected, 
the lack of an equally good quantitative prediction of 
the panel response and one would naturally expect that 
the time marching of a full finite element model, i.e. 
option (2), would represent the answer to quantitative 
analyses and design.  Unfortunately, the computational 
effort associated with such Monte Carlo studies is 
surprisingly large with using standard packages, e.g. 
MSC.NASTRAN.  Such computational times may be 
acceptable for specification applications, e.g. post-
mortem analyses, but are prohibitively large at the 
design stage. Adopting specially written finite element 
approaches might provide a reduction of this time (see 
the comprehensive efforts of Mei and coworkers in 
Mei, 2003). 
 
An exciting, middle-of-the-road approach has recently 
surfaced that provides the flexibility of the finite 
element modeling and a computational efficiency 
comparable to that of the single-mode model, but 
without the benefit of simple exact/approximate 
solutions.  This approach centers around the derivation 
of a reduced order model (ROM) corresponding to an 
“approximate modal” expansion of the form 

 ( ) ( ) ( )zyxtqtzyxs i

m

i
i ,,,,,

1
Ψ=∑

=
 (1) 

where, as in the single-mode model, the vectors 
( )zyxi ,,Ψ  denote a set of prescribed displacement 

patterns and ( )tqi  the generalized coordinates of the 
ROM. 
 
In this light, the goal of this paper is to present a ROM 
formulation recently devised and to demonstrate its 
reliability, in comparison to full finite element models, 
for the prediction of the displacement and stress fields 
on panels and the corresponding fatigue life. 
 

NONLINEAR EQUATIONS OF MOTION 

Central to the derivation of the equations of motion for 
the finite element model is the von Karman strains 
definition  
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which is relevant to panels exhibiting moderately large 

rotations 
x
w
∂
∂  and 

y
w
∂
∂ . Given the quadratic nature of 

these displacement-strain relations, it can be shown that 
the panel displacements satisfy the cubic nonlinear 
equations 
 ( )tFFKsCsM NL +=++ 0   (3) 
where NLK  is the vector of nonlinear restoring forces 
the elements of which can be expressed as 

( ) p

N

plj
jliljp

N

lj
jlilj

N

j
jijiNL sssKssKsKK ∑∑∑

===
++=

1,,

)3(

1,

)2(

1

)1(

 (4) 
where N is the total number of degrees-of-freedom in 
the finite element model. Further, every stress 
component S at every point of the panel can be written 
in the form 

 ∑∑
==

++=
N

ji
jiij

N

i
li ssSsSSS

1,

)2(

1

)1()0( .  (5) 

In  practical  problems,  the  total  number  of  degrees-
of-freedom  in  the  finite  element is large leading to a 
highly time consuming effort. It is thus desirable to 
obtain a simplified approach. To this end, it has been 
suggested to proceed with an approximate, assumed 
mode representation of the displacement field as 
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 ( ) ( ) ( )zyxtqtzyxs i

m

i
i ,,,,,

1
Ψ=∑

=
.  (6) 

This linear change of variables does not change the 
character of Eq. (4) and (5) which simply become 
 ( )tFFKqCqM NL +=++ 0  (7) 

( ) p
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 (8) 
where q  denotes the vector of components jq  and 

 ∑∑
==

++=
N

ji
jiij

N

i
li qqSqSSS

1,

)2(

1

)1()0(
. (9) 

It is then concluded that  
(i) the nonlinearity is in stiffness only, and 
(ii) the determination of the reduced order models of 

Eq. (8) and (9) only requires the estimation of the 

coefficients 
)1(

ijK , 
)2(

iljK , 
)3(

iljpK , )0(S , 
)1(

iS , 
)2(

ijS . 

 
These observations were well recognized by Rizzi and 
Muravyov (2002) and Muravyov and Rizzi (2003) 
who devised an elegant strategy for the evaluation of 

the coefficients 
)1(

ijK , 
)2(

iljK , and 
)3(

iljpK  from a series 

of static solutions in which the forces required to 
obtain a specified displacement field are determined. 
Specifically, assume first that a single mode is kept in 
the expansion of Eq. (3), i.e.      
  ( ) ( ) ( )zyxtqtzyxs jj ,,,,, Ψ= . (10) 
  
Then, the external force that must be exerted on the 
panel to obtain this static displacement is 

 3)3(2)2()1(
1 jijjjjijjjiji qKqKqKF ++= . (11) 

Further, the displacement field 
  ( ) ( ) ( )zyxtqtzyxs jj ,,,,, Ψ−=  (12) 
can similarly be accomplished with the forces 

 3)3(2)2()1(
2 jijjjjijjjiji qKqKqKF −+−= .  (13) 

The knowledge of the forces of Eq. (11) and (13) 
provides a direct strategy for the evaluation of the 

coefficient 
)2(

ijjK . Specifically, it is found that 

  2
21)2(

2 j

jj
ijj q

FF
K

+
=   (14) 

    

To determine the remaining two coefficients, 
)1(

ijK and 
)3(

ijjjK , an additional force equation must be obtained. 
For example, a linear static solution sequence can be 

performed that yields directly 
)1(

ijK so that
)3(

ijjjK  can 
then be computed from  

 3

2)2()1(
1)3(

j

jijjjiji
ijjj q

qKqKF
K

−−
= .  (15) 

This approach is not appropriate if the panel 
temperature effects are to be included in the reduced 
order model as the MSC.NASTRAN linear static solver 
(SOL 101) does not account for in-plane stresses, e.g. 
thermal stresses. In this case, one proceeds with the 
nonlinear force evaluation corresponding to the 
displacement field 
 ( ) ( ) ( )zyxtqtzyxs jj ,,ˆ,,, Ψ=  (16) 

where jj qq ≠ˆ . That is, 

 3)3(2)2()1(
3 ˆˆˆ jijjjjijjjiji qKqKqKF ++=  (17) 

Combining Eq. (11), (14), and (17) then permits the 

evaluation of the remaining two coefficients, 
)1(

ijK  and 
)3(

ijjjK .  
  
During these static solution sequences, both the forces 
and the entire stress field are evaluated. While the 

forces lead to the coefficients 
)1(

ijK , 
)2(

ijjK , and 
)3(

ijjjK , 
the stress fields 

 2)2()1()0(
jjjjj qSqSSS ++= , (18) 

 2)2()1()0(
jjjjj qSqSSS +−=  (19) 

and 

 2)2()1()0( ˆˆ jjjjj qSqSSS ++= . (20) 
can similarly be used for the determination of the 

coefficients )0(S , 
)1(

jS , and 
)2(

jjS  for any stress S at 
any grid point of the finite element model. 
    

The evaluation of the coefficients 
)2(

iljK , 
)3(

illjK , and 
)2(

ljS for jl ≠  proceeds as above but in connection with 

the displacement fields 
  ( ) ( ) ( ) ( ) ( )zyxtqzyxtqtzyxs lljj ,,,,,,, Ψ+Ψ=   (21) 
and 
 ( ) ( ) ( ) ( ) ( )zyxtqzyxtqtzyxs lljj ,,,,,,, Ψ−Ψ= . (22) 

Finally, the coefficients 
)3(

iljpK  can be evaluated from 
the single assumed displacements field 
( ) ( ) ( ) ( )zyxqzyxqzyxqtzyxs pplljj ,,,,,,,,, Ψ+Ψ+Ψ=

 (23) 
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It should be noted that the above procedure for the 
evaluation of the coefficients is exact, the only 
approximation in the reduced order modeling is the 
modal expansion of Eq. (6). 
 
The above procedure has been described for an 
arbitrary basis ( )zyxj ,,Ψ , j = 1, ..., N, but these 
functions must be defined to obtain numerical results. 
Further, the closeness of the ROM results to their 
finite element counterparts can be expected to be 
dependent on the choice of the functions ( )zyxj ,,Ψ . 
Since the present problem focuses mainly on the 
transverse vibrations of the panel, it is appropriate to 
include in the set ( )zyxj ,,Ψ  functions such as the 
mode shapes of the panel under small deflections 
around one of its typical configuration, e.g. unbuckled 
or buckled. These functions represent a basis for the 
transverse deflections but unfortunately do not include 
any in-plane motions. In large deflections, a coupling 
of the transverse and in-plane deflections exists with 
the latter inducing the “membrane” stiffening effect. It 
is thus necessary to include both in-plane and 
transverse displacement bases in the set ( )zyxj ,,Ψ . 
 
In this regard, it should be noted that 
(i)  the in-plane motions are typically induced by their 

transverse counterparts and exhibit an amplitude 
that is related in first approximation to the square 
of the out-of-plane displacements, 

and 
(ii) the natural frequencies of the in-plane modes (for 

a flat panel) are generally much higher than their 
transverse counterparts so that the in-plane 
problem is, to first order, a static one. 

 
On this basis, it has been proposed (Mignolet et al., 
2003) to rely on a dual basis iΨ  = ( iΨ̂ , iΨ ) in which 

iΨ̂  would be represent the selected transverse modes 

of the linear panel and iΨ  would be representative of 
the second order, in-plane displacements induced by 

iΨ̂ . These functions would be obtained from the static 
nonlinear response of the panel to transverse loads  
p iΨ̂ . Specifically,  consider two different values of p, 
i.e. p and 2 p. Then, the corresponding two 
displacement fields (each including both in-plane and 
out-of-plane components) 1s  and 2s can be combined 

to form iΨ  through an elimination of the linear (out-
of-plane) terms, e.g. as 
 12 2 ssi −=Ψ . (24) 

Note that a similar discussion has been conducted by 
Gordon et al. (2003) to justify the use of in-plane 
modes (referred to as the dual basis above and as the 
companion by Gordon et al. (2003)). 
 
The above discussion focused on the representation of 
the nonlinear terms in the ROM. The coefficients of the 
linear terms, i.e. M , C , 0F , and )(tF  must also be 
determined. In fact, from the formulation of the ROM 
as a Galerkin approximation, it is found that the 
components of these matrices and vectors are 
    j

T
iij MM ΨΨ= ;     j

T
iij CC ΨΨ= ;      

    0,0 FF T
ii Ψ= ;    and    ( ) ( )tFtF T

ii Ψ= .  (25) 
One case of particular interest is the impingement of an 
acoustic wave on the panel. When the wave is at normal 
incidence to the  panel, one has  
 ( ) ( )tpvtF =  (26) 

where v  is a constant (with respect to time) vector. In 
the case of an acoustic excitation at non-normal 
incidence, the loading on the panel involves the 
pressure time history over a range of time, i.e. 
 ( ) ( )∑ τ−=

j
jj tpvtF  (27) 

where the time shifts tjj ∆=τ  are associated with the 
propagation of the wave along the panel. 
 
It was found that the natural frequencies associated with 
the dual modes are much higher than those 
corresponding to the transverse mode. Given the in-
plane nature of the dual modes, this observation is not 
unexpected but it implies a substantial increase of the 
computational effort associated with the numerical 
integration of the ROM equations of motion by 
requiring an appropriately small time step to track the 
dual mode dynamics. In many cases, it may be expected 
that the loading on the panel will not exhibit any energy 
at such high frequencies and thus it is acceptable to 
proceed with a static condensation of the dual modes. 
That is, their mass and damping coefficients are ignored 
and the values of the dual mode coordinates are 
evaluated at each time step from their transverse 
counterparts to satisfy 0FK NL = . In all examples 
considered below, it was found that the magnitude of 
the in-plane displacements is small enough to remain in 
the linear range. Thus, the nonlinear algebraic equations 

0FK NL =  can be linearized with respect to the dual 
modes only to provide an efficient computation of their 
generalized coordinates. 
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REDUCED ORDER MODEL VALIDATION 

The validation of the above ROM is being achieved on 
the basis of two flat rectangular clamped aluminum 
panels of dimensions 0.3556m x 0.254m x 0.00102m 
(Panel 1) and 0.3048m x 0.254mx 0.00102m (Panel 2) 
both of which were discretized with 14x10 CQUAD4 
elements. The validation encompasses the following 
aspects: 
 

(1) validation of the ROM on static loads 
 

(2) validation of the static condensation of the dual 
modes 

 

(3) dynamic validation 
 

(4) assessment of fatigue life/accumulated damage. 
 
The ROM provides a modeling of the response that 
should be valid under a broad range of excitations. In 
particular, the ROM should be applicable to static 
loads and the consideration of such problems provides 
a first and fast perspective of its reliability. In this 
investigation, the panel 2 was assumed to be loaded 
with a uniform static pressure varying in the range of 1 
to 3600 Pa. For each load condition, a full NASTRAN 
static analysis was carried out to establish the baseline 
for the assessment of the ROM results. Shown in Fig. 
2 and 3 are the displacement and stress at the middle 
of the panel as obtained from the NASTRAN analysis 
and with the reduced order model with 1, 3, and 6 
transverse modes and their associated duals. There is 
clearly an excellent agreement between the 
NASTRAN prediction and the 12-mode (6 transverse 
and 6 duals) ROM. To test the reduced order modeling 
in a strongly nonlinear situation, the panel was next 
assumed to be  subjected to a temperature equal to 1.8 
times its buckling temperature in addition to the 
pressure described above. As can be seen from Fig. 4, 
an excellent prediction of the displacements of the 
middle of the panel are again obtained. 
 

 
Figure 2. Static response of an unbuckled panel 
to a uniform pressure. Center displacement as a 

function of pressure.  
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Figure 3. Static response of an unbuckled panel to a 
uniform pressure. Stress xxσ  as a function of pressure.  
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Figure 4. Static response of a buckled panel 

to a uniform pressure. Center displacement as a 
function of pressure. 

 
Having established the reliability of the reduced order 
modeling in static cases, it was desired next to validate 
its usefulness in dynamic problems. This process was 
achieved in two steps. First, the static condensation 
procedure described above was evaluated and then, in 
the second phase, a comparison on the response of the 
panel to a random loading was performed. For the static 
condensation validation, the panel 2 was subjected to a 
white noise excitation of overall sound pressure level 
(OASPL) equal to 153 dB in the range of 0-2083 Hz 
and a 6 transverse mode models (with associated duals) 
was considered. The full solution of the reduced order 
model equations is compared to its statically condensed 
counterpart in Fig. 5 (for the displacement at the middle 
of the panel) and Fig. 6 (for the corresponding stress). 
Clearly, the spectra of the full and condensed solutions 
are very close to each other through the entire 
frequency range of the exictation/response. 
  
On the basis of the excellent matching of Fig. 5 and 6, 
the static condensation was relied upon for the full 
dynamic validation conducted on Panel 1.  The linear 
response of the panel was first explored to establish a 
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Figure 5. Comparison of power spectra of the 

displacement at the center of the panel for the full and 
statically condensed models. 
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Figure 6. Comparison of power spectra of the stress 
xxσ  at the center of the panel for the full and statically 

condensed models. 
 

firm ground for the comparison of the  nonlinear 
responses. Shown in Fig. 7 are the power spectral 
densities of the displacement of the center of the panel 
estimated from time histories of its linear response 
when subjected to a 100dB white noise excitation in 
the range of 0-2083 Hz. Clearly, the agreement 
between the MSC.NASTRAN and reduced order 
model results is excellent, as expected. 
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Figure 7. Comparison of power spectra of the 

displacement at the center of the panel for 
MSC.NASTRAN and the reduced order model 

Linear system 
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Figure 8. Comparison of power spectra of the 

displacement at the center of the panel for 
MSC.NASTRAN and the reduced order model 

Nonlinear system - 147dB 
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Figure 9. Comparison of power spectra of the stress 
xxσ  at the center of the panel for MSC.NASTRAN and 
the reduced order model Nonlinear system - 147dB 

 
 A white noise excitation of sound pressure level 147dB 
in the same frequency range was generated to assess the 
dynamic nonlinear prediction capabilities of the 
proposed reduced order. A series of NASTRAN 
nonlinear solutions were performed with the standard 
tolerance and maximum time steps DT1 = 2.4 410− s., 
DT2 = 4 510− s., and DT3 = 2 510− s. The 
corresponding power spectral densities of the 
displacement at the center of the panel are shown in 
Fig. 8 together with the 16-mode (8 transverse and 8 
duals) ROM prediction. An excellent matching of the 
dominant component of the response, i.e. the first peak, 
is achieved. Further, the predicted levels of the next 
three peaks is also very good although the frequency 
and width of the peaks do not coincide as well. Overall, 
a good matching at least is achieved. A similar 
perspective can be obtained from the power spectral 
densities of the stress xxσ , see Fig. 9. 
    
The computational efficiency of the reduced order 
modeling technique allows for the generation of the 
very long time histories of the displacements and 
stresses which are required for an accurate estimation of 
the fatigue life of the panels. To exemplify this 
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computation, a time history of 1.5 million time steps 
(∆t = 2.4 410− s.) was generated with the reduced 
order model for the 147dB excitation. This large data 
set was then processed by the rainflow algorithm 
(Downing and Socie, 1982) to obtain the probability 
density function of the rainflow ranges shown in Fig. 
10. Note the very smooth features of this distribution, 
even far in the right tail. From the ensemble of 
rainflow ranges and their associated half-periods, an 
estimate of the damage accumulated in the panel over 
the total time (= 360 s.) can be determined. This data 
can finally be used to predict the fatigue life of the 
panel under the 147 dB white noise excitation but it 
can also be used to validate estimators of this fatigue 
life. A recent investigation (Yang et al., 2004) has 
reviewed and compared several 
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Figure 10. Probability density function of the rainflow 

ranges - ROM at 147dB 
 

  estimators of the accumulated damage. Specifically, 
 
Rayleigh approximation: 
 [ ] ( ) ( )KTmDE m

SS
m

R πσσ+Γ= − 2/2/12 12/3  (28)  
where Sσ  and Sσ  are the standard deviations of the 
stress process and its time derivative and m and K are 
the exponent and coefficient of the S-N curve, 
respectively. Finally, T is the total time. 
 
Rayleigh approximation with Gaussianity correction: 
 [ ] GRDE R /  (29) 
where the Gaussianity Ratio is defined as 
  ( ) ( ) 24/311 4 −κ−−= mmGR     for  34 <κ  (30) 
and 
 ( ) ( )[ ] 1

4 24/311 −−κ−+= mmGR  for  34 >κ  (31) 
where 4κ  denotes the coefficient of kurtosis of the 
stress process. 
 
Single moment estimate (Lutes and Larsen, 1990): 
 [ ] ( ) cTDE b

aSM /−λ=  (32) 

where aλ  denotes the spectral moment of order a of the 
stress process, i.e. 

 ( ) ωωω=λ ∫
+∞

∞−
dS a

SSa   (33) 

where ( )ωSSS  is the power spectral density of the 
stress process. Further, the coefficients a and b are 
      ma /2=     2/mb −=  . (34) 
Finally, the scaling coefficient c usually selected as 

( )[ ]2/12/2 2/3 mKcc m
Narr +Γπ== .  (35) 

 
 Single moment estimate with Gaussianity correction: 
 [ ] GRDE SM /  (36) 
 
Modified Rayleigh formula (Yang et al., 2004): 

 [ ] ( )
( ) [ ] )1(4402.3

25.1
4/1

2
−σ

Γ
+Γ

π

σ
= m

q
finq m
K

T
DE  (37) 

 
Modified single moment method (Yang et al., 2004): 
Use Eq.(32) with 

 ( )
( ) [ ] )1(29068.0

4/1
25.12 −

+Γ
Γ

π= m
NL m

Kc  (38) 

Equations (28), (29), and (32) are standard damage 
estimators while Eq. (37) and (38) have been 
specifically derived for the nonlinear response of 
structures (see Yang et al., 2004). These two 
expressions were shown to outperform the other 4 
estimators on the basis of single mode time histories 
and some limited experimental data. Multi-mode/finite 
element data could however not be produced to provide 
a better assessment of Eq.  (37) and (38). With the 1.5 
million time step time histories, this validation can be 
accomplished.  In fact, Fig. 11 confirms that Eq. (37) 
and (38) outperform all other approaches leading to 
errors on the accumulated damage that are below 30% 
over the range ]8,1[∈m . 
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Figure 11. Relative error on the prediction of the 

expected damage as a function of the S-N exponent m 
for different methods (“Ray” = Rayleigh, “SM” = 
Single Moment, “GR” = with Gaussianity Ratio) 
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SUMMARY 

In this paper, a complete reduced order modeling 
scheme has been presented to reduce a full finite 
element model into a set of n discrete coordinates 
representing the contributions of n arbitrarily specified 
“modes” to the overall panel response. Included in 
these modes are in-plane motions of the panel that are 
statically associated with the transverse deflections 
and are referred to as dual modes. The nonlinear terms 
in the n corresponding differential equations are then 
obtained by evaluating the forces required to produce a 
given set of panel displacements. These terms may be 
evaluated in the presence of a nonzero panel 
temperature as to include the softening thermal effects. 
Further, the strategy was extended to include the 
determination of the coefficients in the generalized 
quadratic relation between the displacement and stress 
fields. In this fashion, a displacement and stress 
reduced order model is obtained. Further, 
computational issues have been shown to motivate a 
static condensation of the dual modes. 
 
Several aspects of this approach were validated here. 
First, the deflection and stresses corresponding to a 
static loading on either an unbuckled or a buckled 
panel were considered and the reduced order model 
results were shown to provide a very good match of 
full finite element computations (NASTRAN). Next, 
the static condensation of the dual mode was critically 
assessed and it was shown that this approach does not 
produce any noticeable difference, beside 
computational time, on the predicted displacements 
and stresses. A nonlinear dynamic load case was then 
considered to further assess the reliability of the 
reduced order modeling. The power spectral densities 
of the displacement and stress considered and 
estimated from NASTRAN and the reduced order 
model were found to match quite satisfactorily. 
Finally, the computational efficiency of the reduced 
order modeling technique was utilized to produce a 
long time history of stress from which an accurate 
estimate of the accumulated damage could be derived. 
This data allowed the comparison of several fatigue 
life predictors and demonstrated the superiority of two 
such estimators recently proposed.  
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ABSTRACT 
 

This paper focuses on the validation of a reduced order modeling strategy for aircraft panels 
subjected to combined thermal effects and an incident acoustic wave strong enough to induce a 
severe geometrically nonlinear behavior. The response of flat panels to two different excitations 
scenarios serves as a basis to assess the appropriateness of several modal bases for the reduced 
order modeling. This comparison emphasizes the importance of the in-plane displacement field 
and of a reliable modeling of the curvature of the deformed panels. Consistently with these 
observations, a novel basis is introduced that involves separate representations of the transverse 
displacements and their induced in-plane counterparts. 

 
INTRODUCTION 

 
The reliable and efficient design of the panels of reusable launch vehicles and other future 
hypersonic vehicles represents a difficult technological challenge. Indeed, these panels will be 
subjected to thermal effects originating from the aerodynamics and potentially severe acoustic 
loads emanating for example from the engine exhaust. To avoid a degradation of the structural 
properties, thermal protection systems (TPS) are expected to be used to “shield” the structural 
components from the high temperatures. While the normal operating temperature of a thermally 
protected panel should be much less than the 3000°F that might be obtained without TPS [1], it 
still might be large enough to induce a decrease of the panel stiffness, either from constrained 
thermal expansion or from a reduction of the mechanical properties. In all cases, a severe acoustic 
loading of these panels will induce large deflections and a substantially reduced fatigue life which 
must be carefully estimated to avoid an unforeseen failure. 
The prediction of the fatigue life of the panels is however a rather challenging task as 
 

(i)  the acoustic excitation is best represented as a random process, 
 

(ii)  the presence of large deflections implies the nonlinearity of the governing equations for the 
panel response and the non-Gaussian character of its probability density function, 

 

and 
 

(iii) the presence of large deflections also implies a nonlinearity of the displacement-stress 
relationship (due to the von Karman strain definition) and thus a further deviation of the 
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distribution of the peak and ranges from the classical models (e.g. Rayleigh, Dirlik, etc., 
see [2]). 

A good qualitative understanding of the dynamic behavior of the panel response through the 
entire range of sound pressure level (SPL) and temperature can be obtained from the published 
literature in this area (see [1], [3]-[17] and references therein). While a qualitative perspective on 
the dynamic response of the panels is important, it is its accurate quantitative prediction which is 
ultimately required for design considerations. Quite naturally, it would seem that this prediction 
could be accomplished using standard finite element packages. This is indeed possible but the 
computational time needed to obtain a time history of the response long enough to derive accurate 
estimates of the statistics of the response and the expected fatigue life is surprisingly large. For 
example, achieving this latter task with an accuracy of the order of a few percents for a panel with 
1,000 degrees-of-freedom and a material with a S-N curve of exponent 8 appears to require one to 
several hundred CPU hours on a top of the line single processor PC (2.4 GHz, 2 GB RAM) 
running the nonlinear NASTRAN dynamic solution with the standard accuracy. 
 
While a decrease of this CPU time will naturally arise from the ever increasing processors speed, 
it is also expected that much more complex models would be studied in practical applications and 
would include in particular thermal protection systems. Even if such a computational time may be 
acceptable to analyze a specific panel, it is not appropriate in the design phase when changes may 
occur frequently and when fast analysis capabilities are needed. These difficulties of a 
straightforward finite element approach have been well recognized in [9], [10], and [13] who 
suggested to proceed with reduced order modeling techniques in which the panel displacement 
field is approximately represented as a linear combination of a series of assumed “modes”. With 
this representation, the number of degrees-of-freedom is reduced to m, the number of modes 
considered, which is small enough to permit an efficient solution of the problem. 
 
A distinguishing feature of the work of Rizzi and Muravyov [13] lies in the finite element code 
used, i.e. as opposed to developing separate finite element capabilities, they have efficiently 
linked their reduced order modeling strategy to NASTRAN thereby allowing the use of all 
elements and resources inside NASTRAN. Then, the goal of this paper is to report on current 
validation efforts and extensions of the nonlinear stiffness evaluation approach of [13] to include 
the panel temperature effects and a stress reduced order modeling to lead to the efficient 
estimation of the fatigue life of panels subjected to a random acoustic excitation and temperature 
effects. For clarity, the formulation of the reduced order modeling strategy will first be briefly 
revisited. 
 

REDUCED ORDER MODELING FORMULATION 
 

In the absence of material nonlinearity, large deformations are assumed to only affect the panel 
dynamics through the von Karman strains, i.e. 
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where u(x, y, t), v(x, y, t), and w(x, y, t) are the in-plane and out-of-plane displacement fields, 
respectively. In a finite element formulation, the determination of these functions is reduced to 
the computation of the nodal displacements, e.g. the in-plane, out-of-plane displacements and 
rotations at these points, which are stored in the vector ( )tw . Given the quadratic nature of the 
above displacement-strain relations, it is expected that this panel displacement vector satisfies the 
cubic nonlinear equations 
 ( )tFFKwCwM NL +=++ 0  (2) 
where M and C denote the mass and damping matrices of the panel. Further, 0F  and ( )tF  are 
respectively a constant excitation vector arising for example from an asymmetry of the panel or 
of its temperature distribution and the time-varying force vector associated with the acoustic 
pressure. Finally, NLK  is the vector of nonlinear restoring forces the elements of which can be 
expressed as 
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where N is the number of physical degrees of freedom. Further, every physical stress component 
S (= xxσ , or yyσ , ...) at every point of the panel can be written in the form 

 ∑∑
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where the coefficients )0(S , )1(
iS , )2(

ijS  depend in general on both the stress and point 

considered. Note that not all the coefficients )1(
ijK , )2(

iljK , )3(
iljpK , )0(S , )1(

iS , )2(
ijS  are non-zero. 

For example, one can expect the coefficients )2(
iiiK  to vanish for flat symmetric panels and a 

constant stress level )0(S  only occurs when the panel is heated. 
The proposed reduced order modeling schemes are based on the representation of the 
displacement vector in a “modal expansion” of the type 

 ( ) ( ) i

m

i
i tqtw Ψ= ∑

=1
 (5) 

where the vectors iΨ  form an appropriately selected basis. Governing equations for the 
coordinates jq  are then obtained by requiring that the error in Eq. (2) be orthogonal to the basis 
selected. This process does not change the character of Eq. (2)-(4) which simply become 
 ( )tFFKqCqM NL +=++ 0  (6) 
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where q  denotes the vector of components jq  and 
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The reduced order coefficients (masses, stiffnesses, etc.) appearing in Eq. (6)-(8) are related to 
their counterparts for the original system of Eq. (2)-(4) through the transformations 
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where lr,Ψ  designates the component l of rΨ  and Ψ̂  is the “modal matrix” 

 [ ]mΨΨΨ=Ψ …21
ˆ . (12) 

It is then concluded that  
(i)  the nonlinearity is in stiffness only,  
(ii)  the determination of the reduced order models of Eq. (6)-(8) only requires the estimation of 

the coefficients )1(
ijK , )2(

iljK , )3(
iljpK , )0(S , )1(

iS , )2(
ijS . 

(iii)  since the equations (6) are obtained through a Galerkin approach, these coefficients depend 

only on a small part of the basis, i.e. the parameter )2(
iljK  depend only on the vectors iΨ , 

jΨ , and lΨ , neither on the rest of the basis nor on the order m. 
 
These observations were well recognized by Rizzi and Muravyov [13] who devised an elegant 
strategy for the evaluation of the coefficients )1(

ijK , )2(
iljK , and )3(

iljpK  from a series of nonlinear 
static solutions in which the forces required to obtain a specified displacement field are 
determined (through a DMAP alter in NASTRAN [13]). Specifically, assume first that a single 
mode is kept in the expansion of Eq. (5), i.e. 
 ( ) ( ) jj tqtw Ψ= . (13) 
 Then, the external force that must be exerted on the panel to obtain this static displacement is 

 3)3(2)2()1(
1 jijjjjijjjiji qKqKqKF ++= . (14) 

Further, the displacement field 
 ( ) ( ) jj tqtw Ψ−=  (15) 
can similarly be accomplished with the forces 

 3)3(2)2()1(
2 jijjjjijjjiji qKqKqKF −+−= . (16) 
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The knowledge of the forces of Eq. (14) and (16) provides a direct strategy for the evaluation of 

the coefficient )2(
ijjK . Specifically, it is found that 

 2
21)2(

2 j

ii
ijj q

FFK +
=   (17) 

To determine the remaining two coefficients, )1(
ijK and )3(

ijjjK , an additional force equation must 

be obtained. For example, a linear static solution sequence can be performed that yields directly 
)1(

ijK so that )3(
ijjjK  can then be computed from 

 3

2)2()1(
1)3(

j

jijjjiji
ijjj q

qKqKF
K

−−
= . (18) 

This approach is not appropriate if the panel temperature effects are to be included in the reduced 
order model as the NASTRAN linear static solver does not account for in-plane stresses, such as 
those created by the panel heating/cooling. In this case, one proceeds with the nonlinear force 
evaluation corresponding to the displacement field 
 ( ) ( ) jj tqtw Ψ= ˆ   (19) 

where jj qq ≠ˆ . That is, 

 3)3(2)2()1(
3 ˆˆˆ jijjjjijjjiji qKqKqKF ++= . (20) 

Combining Eq. (14), (17), and (20) then permits the evaluation of the remaining two coefficients, 
)1(

ijK  and )3(
ijjjK .  

 
During these static solution sequences, both the forces and the entire stress field are evaluated. 

While the forces lead to the coefficients )1(
ijK , )2(

ijjK , and )3(
ijjjK , the stress fields 

 2)2()1()0(
jjjjj qSqSSS ++= , (21) 

 2)2()1()0(
jjjjj qSqSSS +−=  (22) 

and 

 2)2()1()0( ˆˆ jjjjj qSqSSS ++= . (23) 

can similarly be used for the determination of the coefficients )0(S , )1(
jS , and )2(

jjS  for any stress 

S at any grid point of the finite element model. 

The evaluation of the coefficients )2(
iljK , )3(

illjK , and )2(
ljS for jl ≠  proceeds as above but in 

connection with the displacement fields 
 ( ) ( ) ( ) lljj tqtqtw Ψ+Ψ=  (24) 
and 
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 ( ) ( ) ( ) lljj tqtqtw Ψ−Ψ= . (25) 

Finally, the coefficients )3(
iljpK  can be evaluated from the single assumed displacements field 

 ( ) ( ) ( ) ( ) pplljj tqtqtqtw Ψ+Ψ+Ψ= . (26) 
 

 
REDUCED ORDER MODELING VALIDATION 

 
On-going validation efforts are focused primarily on the selection of the “best” basis for the 
appropriate representation of both the displacement and stress fields. 
 
Transverse Displacements Modeling 
To investigate the modeling of the transverse displacements, a flat rectangular clamped aluminum 
panel of dimensions 0.3556m x 0.254m x 0.00102m was considered and was discretized with 
14x10 CQUAD4 elements. It was further subjected to the combined effects of a uniform 
temperature equal to 1.8 times the buckling temperature and to a normally incident white noise 
acoustic wave with a sound pressure level (SPL) of 104dB. The excitation level and the 
temperature were selected to give a reasonably broad response of the panel, i.e. in the range of ± 
twice the buckling deformations. Next, a time history of this excitation was generated as a series 
of independent identically distributed normal deviates and was specified as input to a nonlinear 
transient NASTRAN analysis. The corresponding time histories of the displacement and stresses 
of the panel were then determined for 15,000 time steps (set at 0.000282 sec.) with the 
NASTRAN standard two-point Newmark integration scheme (no equivalent linearization 
technique was used). It should be noted that the small time step selected here to capture well the 
panel dynamics implies a very high Nyquist frequency, 1773 Hz, and consequently a very large 
number of excited modes. It was noted that 39 modes were present in the frequency band of the 
white noise excitation. 
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Figure 1. Time history of the displacement of the panel center 

 

 
In the case of panels experiencing snap-throughs, as seen in Fig. 1, there are several bases that 
seem appropriate for a single-mode reduced order model. In fact, 5 such bases were identified: 
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(i)  basis 1: the buckled shape of the panel, see Fig. 2(a). 
 

(ii)  basis 2: the “umbrella” (i.e. the zero nodal line) mode of vibration of the unbuckled, linear 
panel, i.e. without any temperature effect, see Fig. 2(b). 

 

(iii) basis 3: the “umbrella” mode of linear vibrations of the buckled panel, i.e. with temperature 
but in small additional motions. Note that the “umbrella” mode was in fact found to be the 
second mode with a natural frequency of 133.94 Hz while the first mode of frequency of 
132.68 Hz. did in fact exhibit one nodal line, see Fig. 2(c) and 2(d). 

 

(iv)  basis 4: the linear eigenvector of the panel buckling problem, see Fig. 2(e). 
 

(v)  basis 5: the approximate mode proposed by Lee [5], see Fig. 2(f). 
 

 
(a) Basis 1  

(b) Basis 2 

 
(c) 

 
(d) Basis 3 

 
(e) Basis 4 

 
(f) Basis 5 

Figure 2. Various responses of the panel. (a) Buckled shape of the panel (basis 1). (b) First linear 
mode of vibration of the unbuckled panel (basis 2). (c) First linear mode of vibration of the 

buckled panel. (d) Second linear mode of vibration of the buckled panel (basis 3). (e) First linear 
buckling mode of the panel (basis 4). (f) Assumed mode of [5] (basis 5). 
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The first assessment focused on the representation of the panel response by the 5 single-mode 
models. To this end, a modal assurance criterion (MAC) type parameter was defined for each of 
the five single-mode model as 

 ( ) ( )i
T
i

T
i

T

i
ww

w

ψψ

ψ
=α      i = 1, 2, 3, 4, 5. (27) 

(a) 

 

(b) 
Figure 3. MAC values iα , Eq. (27), for the five bases (a) as functions of the 

displacement of the panel center, and (b) as functions of the MAC values iα  of basis 1. 
 
 
From the Cauchy-Schartz inequality, a unit value of iα  implies that the panel displacement field 
w  is exactly represented by the basis iψ . The time histories of the coefficients iα  do not display 

any clear trend but a much more interesting correlation is obtained when plotting the values of iα  
vs. the displacement of the panel center, see Fig. 3(a), and versus each other, see Fig. 3(b). It 
appears from these figures that 
 

 (i) the coefficients iα  achieve values close to 1 (in magnitude) when the panel deformation is 
“large”, and 

 

(ii) the differences between the values of iα  corresponding to the different bases, see Fig.  3(a) 
and (b), are typically only small. This observation is particularly appropriate for the bases 
1, 2, 4, and 5; the third basis, i.e. the linear mode of vibration of the buckled panel, appears 
to exhibit a larger scatter/variability in MAC value. 

 
To obtain a better understanding of this situation, the displacement field of the entire panel was 
plotted at a series of times, see Fig. 4(a)-(d) and Table 1 for some representative results. It is seen 
that the displacements near the buckled position, see Fig. 4(a), are very consistent with the basis 
3, i.e. they tend to be associated with vibrations of the panel around the buckled position. For 
larger displacements however, the “double peak” of the response seen on Fig. 2(d) and 4(a) seems 
to disappear and the panel displacement is much closer to the buckled shape, see Fig. 4(b). 
 

Basis 5
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These observations are certainly consistent with the expectation that large displacements are 
associated with large values of the dominant mode(s). Given the uniform distribution of the 
pressure, the buckling mode (basis 1) and the second mode of the buckled panel (basis 3) should 
exhibit large modal forces and thus should dominate the response, as confirmed in Fig. 4(a) and 
(b). When small response levels are observed, other modes should also be present, as seen in Fig. 
4(c), or may entirely dominate the displacement field, see Fig.4(d). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Deformed shape of the panel at four typical times. (a) t = 0.287605sec., 
(b) t = 0.644511sec., (c) t = 0.292011sec., and (d) t = 0.30523sec. 

 
 

Table 1. Center deflection ratio (center deflection at given time divided by center deflection at 
buckling) and MAC values iα  at the four typical times of Fig. 4 

Time (sec.) Center 
Deflec. Ratio 

1α  2α  3α  4α  5α  

0.287605 -0.979 -0.979 -0.996 -0.968 -0.967 -0.968 
0.644511 2.057 0.995 0.993 0.950 0.998 0.998 
0.292011 -0.546 -0.896 -0.894 -0.792 -0.915 -0.916 
0.30523 0.244 0.237 0.239 0.049 0.281 0.281 

 
 

From the standpoint of the prediction of the largest transverse deflections, it is seen from the 
above results that (i) a small order reduced order model is fully appropriate, and (ii) that the 
choice of one basis as opposed to another similar one should affect only very little the response 
prediction. 
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Validation Example and In-Plane Displacements Modeling 
Since fatigue damage is primarily associated with large deflections/large cycles, it may be 
expected that the above observations would also hold in connection with the fatigue life. Note 
however that the accumulated damage is governed by the stresses, not the deflections, and thus an 
assessment of the appropriateness of reduced order models for fatigue life estimation should 
focus on their approximation of the stresses. To narrow the breadth of the analysis, a non-heated 
panel was considered for which bases 2 and 5 could be used. A sixth basis was also considered 
that is similar to basis 5 but involves the clamped-clamped beam modes, see [8] for details. Since 
the specific coefficients of the basis 6 were stated in [8] for an aspect ratio of 1.2, a second panel 
(flat clamped aluminum panel of dimensions 0.3048m x 0.254mx 0.00102m) was discretized 
with 14x10 CQUAD4 elements and was used instead of panel 1 for the remainder of the 
validation. 
 
Prior to the assessment of the stresses modeling, it was deemed noteworthy to confirm the general 
applicability of the reduced order scheme. First, the effects of the scaling factors q and q̂ , see Eq. 
(13), (15), and (19), were investigated. To this end, a series of computations were performed with 
values of these coefficients ranging from 610−  to 110− , i.e. from a thousand times smaller to a 
hundred times larger than the panel thickness. It was found that the resulting reduced order 
coefficients (stiffnesses and stresses) were very stable, keeping at least 5 significant digits say for 
the dominant terms, except for very small and very large values of the scaling factors. 
Accordingly, it seems recommended to select q and q̂  to be of the order of the panel thickness. 

Further, it was noticed that the terms )2(
iiiK  and )0(S , although not quite zero, were very small in 

comparison with the remaining stiffness and stress coefficients. Finally, a series of computations 

performed at different temperatures demonstrated that only the first terms, i.e. )1(
ijK  and )0(S , 

were dependent on temperature. In fact, the linear stiffness coefficients )1(
ijK  appeared to vary 

almost exactly linearly with temperature. All of these results, which are perfectly in agreement 
with the von Karman strains and with approximate analyses (e.g. [5-8]), support the validity of 
the reduced order modeling scheme. 
 
It was next questioned how the assessment of the reliability of the stress modeling should be 
conducted. The most straightforward approach is to compute the fatigue life (or fatigue damage 
accumulated after a “long” time) obtained with the full finite element and compare it with the 
corresponding estimates obtained with the three different reduced order models. Clearly, this 
comparison would have to be performed for different sound pressure levels and various S-N 
curves (e.g. various exponents of the S-N curve). While this parametric study would yield the 
expected perspective, it would not provide a good basis for the detailed assessment which is 
desired here. Since the nonlinearity only affects the stiffnesses and the stresses, it was felt that the 
analysis of the static response of the panel for various load levels would provide a simple, yet 
clear, basis for the desired validation. Note in this regard that the fatigue life of the panel depends 
on the level of variability of the stresses, e.g. on their variances, and that the contributions of 
different modes to the variances are approximately in the same ratio ( 3

iω  vs. 2
iω ) as they are for 

the static response in a linear multimodal situation. 
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Figure 5. Static response of the panel to a uniform pressure. (a) Center displacement as a 

function of pressure and (b) stress xxσ  at center as a function of its transverse displacement 
 
Shown in Fig. 5(a) are the transverse displacements of the center of the panel predicted by the 
NASTRAN solution (SOL 106), the corresponding single-mode reduced order model (basis 2), 
and the approximations derived in [5] (basis 5) and [8] (basis 6). While the agreement is in 
general very good, it appears that the reduced order model corresponding to basis 2 exhibits a 
nonlinear stiffness coefficient )3(

iiiiK  that is slightly too large, at the contrary of the 
approximations of [5] and [8]. The similarity of the displacements predicted from these three 
bases is however consistent with the previous findings (see Fig. 3). 
 
The stresses are not independent of the displacements: they are determined through the 
memoryless quadratic transformation of Eq. (4) or (8). The stresses predicted by the reduced 
order modeling thus result from two cascaded approximations: the modeling of the displacement 
field and the approximation of the quadratic transformation. Having established the reliability of 
the displacement field obtained from the reduced order models, see Fig. 5(a), it remains to assess 
the accuracy of the estimated quadratic transformation. To this end, the stress in the x-direction at 
the center of the bottom of the panel (largest normal stress at that point) was analyzed as a 
function of the displacement of that point. Shown in Fig. 5(b) are the corresponding plots for the 
NASTRAN data, the current reduced order model, and the two approximations of [5] and [8]. 
Surprisingly, it is found that these latter approximations substantially overpredict the stress while 
the reduced order model provides an close fit of the NASTRAN data over that range. It should be 
noted that both the reduced order modeling and the approximations of [5] and [8] are perfect 
parabolas but, interestingly, the NASTRAN data is also very closely by a quadratic polynomial 
( 2R =0.999977), see Table 2. Note that the constant stress coefficient )0(S  was found to be very 
close to zero in all cases as can be expected from the lack of temperature. Further, the linear 
coefficients )1(

iS  were all found to exceed their NASTRAN counterpart by 7% to 19% but a 
much larger scatter exists in connection with the quadratic terms: the reduced order model 
coefficient is smaller (by a factor of 3.4) than the NASTRAN value but the approximations of [5] 
and [8] are larger, by a factor of 2.5. 
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Table 2. Stress coefficients obtained from NASTRAN, the reduced order models with the basis 2 
with or without its dual, and the approximations of [5] and [8]. 
Solution )0(S  )1(

iS  )2(
ijS  

NASTRAN - 2.241 410  1.123 1010  1.513 1210  
Reduced Order Modeling 

(Basis 2) 
4.218 210−  1.202 1010  4.363 1110  

Harmonic approximate modes 
(Basis 5, [5]) 

4.112 210−  1.275 1010  3.705 1210  

Clamped beam approximate modes 
(Basis 6, [8]) 

- 7.118 210−  1.339 1010  3.704 1210  

Reduced Order Modeling 
(Basis 2 + Dual) 

5.180 110  1.201 1010  2.299 1210  

 
In understanding the results of Fig. 5, it is important to note that the approximations of [5] and [8] 
rely on approximate modes but do include in-plane displacements proportional to the square of 
the magnitude of their transverse counterparts. On the contrary, the reduced order model is based 
on an exact linear mode that is devoid of in-plane motions. In fact, it is this lack of in-plane 
displacement which is believed to be the source of the observed stiffer behavior. Indeed, since 
there is no in-plane displacement allowed, the panel is constrained and therefore appears stiffer 
than it would be if in-plane displacements were taking place.  
 
In regards to the results of Fig. 5(b), it should be noted that the stresses are directly related to the 
curvatures of the transverse displacement field, not the displacements themselves. Thus, a good 
matching of the deformed shapes, as seen in Fig. 3 and 5(a), does not guarantee an equally good 
approximation of the stresses. This observation, and the findings of Fig. 5(b), are in fact neither 
specific to plates nor to nonlinearity, a similar argument can be developed in connection with 
linear beams where an overprediction of the stress at the middle by 23.4% and 7% using the bases 
5 and 6, respectively, is obtained. 
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Figure 6. Reduced order modeling errors in the static response of the panel to a uniform pressure 
for different combinations of modes. (a) Center displacement as a function of pressure and (b) 

stress xxσ  at center as a function of its transverse displacement 
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Could the reduced order modeling prediction be improved by selecting two or more modes of the 
linear panel? Clearly, the static transverse displacements are not exactly proportional to the first 
mode and thus contributions of higher order modes are expected, albeit small for the uniform 
loading considered here. Nonetheless, the inclusion of higher order modes does not produce any 
in-plane displacement and thus does not resolve the fundamental issue of Fig. 5(a). In fact, a 
series of two mode combinations were studied, i.e. modes 1 and 3 (the (1,1) mode), 1 and 5 (the 
(0,2) mode), and 1 and 7 (the (2,0) mode), and the results, see Fig. 6, confirmed this expectation: 
mode 3 contributed very little as it was not excited directly and the inclusion of modes 5 and 7 led 
to larger, not smaller, differences with the NASTRAN results of Fig. 5(a). 
 
These observations appear to indicate that the improvement of the reduced order model prediction 
must be achieved through the inclusion of an in-plane displacement field. Since the relative 
magnitude of the transverse and in-plane displacements is expected to vary as a function of the 
excitation magnitude (see the approximations of [5] and [8]), it does not appear appropriate to 
consider a single basis including both types of displacements. Rather, it is proposed here to have 
a dual basis ( iΨ , iΨ ) in which iΨ  would be as before the transverse modes of the linear panel 

and iΨ  would represent the in-plane displacements. 
 
Several options are possible in regards to the selection of iΨ , e.g. as the in-plane vibration modes 
of the panel. While this choice appears straightforward, it does not correspond to the physics of 
the present problem; in-plane modes will generally be very high frequency modes at the contrary 
of the lower frequencies excited here. In this light, the in-plane motions present can then be 
viewed as quasi-static (an observation already used in the literature, e.g. [5] and [8]). Then, a 
natural choice for iΨ  would be the in-plane displacement field associated with one of the 
imposed displacements of Eq. (13), (15), or (19). Unfortunately, we were not able to extract this 
information from typical NASTRAN solutions and thus an alternative approach was undertaken. 
 
If the panel has constant thickness and density, the transverse modes are orthogonal to each other 
with respect to the unit operator and a static displacement of the linear panel of the form of Eq. 
(13) is generated by a similar load, i.e. proportional to iΨ . The in-plane motions resulting on the 
nonlinear panel from this pressure distribution can thus be viewed as directly related to the 
transverse displacement field iΨ  and thus can be used to obtain iΨ . In this regard, note that the 
deflections generated by a static load proportional to iΨ  will primarily be transverse and that this 

large component must be extracted to yield the in-plane vector iΨ . If the applied pressure is not 
too large, the transverse response will essentially be linear with respect to the applied load at the 
contrary of the in-plane motions which will exhibit a quadratic type behavior. On the basis of 
these observations, the selection of iΨ  was achieved as follows. First, the static nonlinear 
response of the panel to a load p iΨ  was obtained for two different values of p, i.e. p and 2 p. 
Then, the corresponding two displacement fields (each including both in-plane and out-of-plane 
components) 1w  and 2w  were combined to eliminate their transverse components and to form 

iΨ  as 
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 12 2 wwi −=Ψ . (28) 
This strategy was used with p = 60 Pa to obtain the dual modes for the first, fifth, and seventh 
transverse modes of the linear panel. Reduced order models based on some or all of these 6 
modes (3 transverse and 3 in-plane) were then determined through the procedure of Eq. (5)-(26) 
and the corresponding displacements and stress at the center of the panel were recomputed, see 
Fig. 5 and 6. Note first the excellent agreement of the displacements obtained by including only 
the first mode and its dual, see Fig. 5(a). As justified above, the inclusion of the mode iΨ  has 
freed the in-plane motions and has decreased the apparent stiffness of the panel thereby leading to 
larger transverse displacements. An improvement of the stress estimate is also obtained as the 
quadratic coefficient )2(

ijS  obtained with the first mode and its dual is much closer to the 

NASTRAN value than the coefficient )2(
ijS  corresponding to the first mode only, see Table 2. 

This result may not be clear from Fig. 5(b) because of the limited range of pressures considered 
there. The above results demonstrate the influence of the in-plane mode but the comparison of the 
mode 1 and mode 1+D (1 and its dual) may seem inappropriate as the number of assumed modes 
is not the same. To palliate this situation, compare the predicted displacements and stresses 
obtained with either modes 1 and 5 or 1 and 7 with those predicted from the mode 1 and its dual. 
It is clearly seen from Fig. 6 that both displacements and stresses are better matched with the 
latter combination of modes than any other pair. It is thus concluded that a two-mode reduced 
order model must include the dual mode. 
 
The effect of a higher number of modes was finally considered. In the linear case, it can be 
demonstrated that the convergence of the displacements and stresses is achieved in an oscillatory 
fashion, i.e. by repeatedly overshooting the exact solution. Further, modes 5 and 7 will provide 
contributions that are opposite in sign to both the one of mode 1 and to those of the next three 
modes (the modes (4,0), (0,4), and (2,2)). Accordingly, it is expected that the modes 1 and 5, 1 
and 7, and especially 1, 5, and 7 may/will lead to larger negative errors than obtained for mode 1 
alone. This result is clearly seen in Fig. 6 for both displacements and stresses and reduced order 
models with or without duals. Note however: 

 

(i) that the magnitude of the overshoot is substantially reduced by the inclusion of the duals, 
 

(ii) the rapid convergence, as the pressure is increased, of the errors associated with the 
reduced order models with duals at the contrary of those without duals. This finding 
suggests that the nonlinear effects are intrinsically captured by using the duals modes. 

 
SUMMARY 

 
This paper focused on the validation of a reduced order modeling strategy for aircraft panels 
subjected to a combination of thermal effects and an incident acoustic wave strong enough to 
induce a severe geometrically nonlinear behavior. The approach involved both the derivation of 
the nonlinear governing equations of the reduced order model and the displacements-stress 
relationship. Of particular importance in this strategy is the selection of the “modal basis” that 
will be used to approximate the panel displacement field. While the shape of the transverse 
displacement field is well represented by a series of different functions, the stresses require an 
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accurate modeling of the curvatures of the panel. Accordingly, it is recommended that the modal 
basis be constructed from exact responses of the panel considered. A comparison of different 
approximations/reduced order models of the static nonlinear response of a panel further 
demonstrated the need for in-plane displacements in the modal basis. Accordingly, a novel dual 
basis was introduced that contains separately the transverse displacements and their induced in-
plane counterparts and is formed by the combination of two similar nonlinear static responses, see 
Eq. (28). A series of comparisons, see Fig. 5 and 6, clearly demonstrate the value of considering 
the in-plane modes in addition to their transverse counterparts. 
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1 

1. INTRODUCTION 

 
The code ELSTEP/FAT has been developed for the estimation of the response, 

displacements and stresses, and fatigue life of panels subjected to a combined strong 

random acoustic loading and steady thermal effects. Overall, the code in its current form 

proceeds from an MSC NASTRAN finite element model. A nonlinear reduced order 

model in terms of an approximate modal basis is first estimated. Next, these nonlinear 

equations are marched in time for a given time history of the random acoustic loading to 

produce a record of displacements and stresses in the panel. The damage accumulated at 

specified points of the panel is then estimated using a rainflow analysis. 

 

The NASA code ELSTEP (Equivalent Linearization using a STiffness Evaluation 

Procedure), more specifically its stiffness evaluation procedure, served as the basis for the 

present code.  Four broad modifications had to be performed to the code for its use in the 

present context. Specifically, 
 

(i)  the temperature effects had to be accounted for, 
 

(ii)  a second set of modes, referred to as the dual modes, were added to the original set 
 

(iii)  the reduced order model of a specified stress at a specified location was also 

produced (constant, linear, and quadratic terms), and 
 

(iv)  a simulation and rainflow analysis component was added for the prediction of the 

fatigue life of the panel. 

 

The overall structure of ELSTEP/FAT is shown in Fig. 1 with future additions (steps 6, 7, 

and 8) shown in grey. Currently, ELSTEP/FAT involves the five steps 1-5, a brief 

description of which directly follows. A more complete discussion of the steps currently 

present, i.e. 1-5, will be presented in the next sections. 
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1.1. Overall Structure and Steps: 
 
1.1.1. Determination of the dynamic reduced order model: 
 
This first step represents an extended version of the STEP component of ELSTEP. The 

goal of the reduced order modeling is to produce a set of equations of motion complete 

enough to represent well the dynamic response (displacement vs. time) of the panel but 

small enough in number to permit fast predictions. The original STEP component was 

modified to include: 
 

 (a) the effects of temperature 
 

 (b) a second set of modes, referred to as the dual modes 
 

 (c) the reduced order model excitation 

 

Note that the determination of the response reduced order model requires a sequential set 

of MSC.NASTRAN runs directed by the ROM part of the code. There is thus a back and 

forth interaction between MSC.NASTRAN and the ROM part of the code as indicated in 

Fig. 1 by the two sided arrows. 

 

1.1.2.  Determination of the stress reduced order model: 

 
The focus of ELSTEP/FAT includes the prediction of the response of panels but also the 

estimation of their fatigue life. Since the fatigue life is governed by the stresses, it was 

necessary to add a representation of the stresses in terms of the reduced order 

coordinates, i.e. those present in the equations of motion of step 1. Note that the 

determination of the stress reduced order model (as for the response ROM) requires a 

sequential set of MSC.NASTRAN runs directed by the ROM part of the code. There is 

thus a back and forth interaction between MSC.NASTRAN and the ROM part of the 

code as indicated in Fig. 1 by the two sided arrows. 
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Figure 1. Structure of ELSTEP/FAT 
 

 

1.1.3. Numerical simulation of time histories of the panel response from the ROM 

 
The estimation of the fatigue life of structures (linear or nonlinear, panels or others) 

subjected to random excitations is a challenging problem because the damage 

accumulated over a given time strongly depends on the distribution of peaks which is a 

difficult function to estimate unless a very good model of it is available. It is thus 

important to always dispose of a simulation capability, coupled with rainflow analysis, 

that permits the assessment of any other prediction capability. The present step focuses 

on the simulation of the response of the panel from the reduced order model. For 

generality, it is assumed that the random excitation is given as an autoregressive process 
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of a specified order with pre-determined parameters. This representation is particularly 

convenient and converges for any non-predictable process. Separate routines for the 

estimation of the autoregressive parameters from a specified spectrum are available from 

the investigators.  

 

1.1.4. Numerical simulation of time histories of the stresses 

 
The output of the previous step is processed through the stress reduced order model to 

obtain time histories of the user specified stresses at user pre-determined locations on the 

panel.  

 
1.1.5. Estimation of fatigue life from rainflow analysis 

 
This step is actually composed of two computations. The first sub-step is the rainflow 

analysis that processes the time histories of stresses of step 4 to produce a series of stress 

ranges with corresponding mean values. The second sub-step is then the prediction of the 

damage accumulated over the time interval of the record. In addition to Miner’s rule, 

several nonlinear damage accumulation rules are available for the estimation of the 

fatigue life. 
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2. DETAILED THEORETICAL DESCRIPTION 

 
The reduced order modeling procedure relies on a finite element (MSC.NASTRAN) 

model of the panel. In the present situation of “large” deflections, the von Karman strain 

definition is generally adopted and thus the finite element displacements satisfy the cubic 

nonlinear equations 

 ( )tFFKwCwM NL +=++ 0  (1a) 

where NLK  is the vector of nonlinear restoring forces the elements of which can be 

expressed as 

 ( ) p
N

plj
jliljp

N

lj
jlilj

N

j
jijiNL wwwKwwKwKK ∑∑∑

===
++=

1,,

)3(

1,

)2(

1

)1( . (1b) 

where N is the total number of degrees-of-freedom in the finite element model. Further, 

every stress component S at every point of the panel can be written in the form 

 ∑∑
==

++=
N

ji
jiij

N

i
li wwSwSSS

1,

)2(

1

)1()0( . (2) 

In  practical  problems,  the  total  number  of  degrees-of-freedom  in  the  finite  element 

highly time consuming effort. It is thus desirable to obtain a simplified approach. To this 

end, it has been suggested to proceed with an approximate, assumed mode representation 

of the displacement field as 

 ( ) ( ) ( )zyxtqtzyxw i

m

i
i ,,,,,

1
Ψ= ∑

=
. (3) 

This linear change of variables does not change the character of Eq. (1) and (2) which 

simply become 

 ( )tFFKqCqM NL +=++ 0  (4a) 
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where q  denotes the vector of components jq  and 

 ∑∑
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++=
N
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jiij

N

i
li qqSqSSS

1,

)2(

1

)1()0( . (5) 
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It is then concluded that  
 

(i)  the nonlinearity is in stiffness only, and 
 

(ii)  the determination of the reduced order models of Eq. (4) and (5) only requires the 

estimation of the coefficients )1(
ijK , )2(

iljK , )3(
iljpK , )0(S , )1(

iS , )2(
ijS . 

 

These observations were well recognized by Rizzi and Muravyov (2002) and Muravyov 

and Rizzi (2003) who devised an elegant strategy for the evaluation of the coefficients 

)1(
ijK , )2(

iljK , and )3(
iljpK  from a series of static solutions in which the forces required to 

obtain a specified displacement field are determined (through a DMAP alter in 

MSC.NASTRAN). Specifically, assume first that a single mode is kept in the expansion 

of Eq. (3), i.e. 

 ( ) ( ) ( )zyxtqtzyxw jj ,,,,, Ψ= . (6) 

 Then, the external force that must be exerted on the panel to obtain this static 

displacement is 

 3)3(2)2()1(
1 jijjjjijjjiji qKqKqKF ++= . (7) 

Further, the displacement field 

 ( ) ( ) ( )zyxtqtzyxw jj ,,,,, Ψ−=  (8) 

can similarly be accomplished with the forces 

 3)3(2)2()1(
2 jijjjjijjjiji qKqKqKF −+−= . (9) 

The knowledge of the forces of Eq. (7) and (9) provides a direct strategy for the 

evaluation of the coefficient )2(
ijjK . Specifically, it is found that 

 2
21)2(

2 j

jj
ijj q

FF
K

+
=   (10) 
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To determine the remaining two coefficients, )1(
ijK and )3(

ijjjK , an additional force equation 

must be obtained. For example, a linear static solution sequence can be performed that 

yields directly )1(
ijK so that )3(

ijjjK  can then be computed from 

 3

2)2()1(
1)3(

j

jijjjiji
ijjj q

qKqKF
K

−−
= . (11) 

 

This approach is not appropriate if the panel temperature effects are to be included in the 

reduced order model as the MSC.NASTRAN linear static solver (SOL 101) does not 

account for in-plane stresses, e.g. thermal stresses. In this case, one proceeds with the 

nonlinear force evaluation corresponding to the displacement field 

 ( ) ( ) ( )zyxtqtzyxw jj ,,ˆ,,, Ψ=  (12) 

where jj qq ≠ˆ . That is, 

 3)3(2)2()1(
3 ˆˆˆ jijjjjijjjiji qKqKqKF ++= . (13) 

Combining Eq. (7), (10), and (13) then permits the evaluation of the remaining two 

coefficients, )1(
ijK  and )3(

ijjjK .  

 

During these static solution sequences, both the forces and the entire stress field are 

evaluated. While the forces lead to the coefficients )1(
ijK , )2(

ijjK , and )3(
ijjjK , the stress 

fields 

 2)2()1()0(
jjjjj qSqSSS ++= , (14) 

 2)2()1()0(
jjjjj qSqSSS +−=  (15) 

and 

 2)2()1()0( ˆˆ jjjjj qSqSSS ++= . (16) 
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can similarly be used for the determination of the coefficients )0(S , )1(
jS , and )2(

jjS  for 

any stress S at any grid point of the finite element model. 

 

The evaluation of the coefficients )2(
iljK , )3(

illjK , and )2(
ljS for jl ≠  proceeds as above but 

in connection with the displacement fields 

 ( ) ( ) ( ) ( ) ( )zyxtqzyxtqtzyxw lljj ,,,,,,, Ψ+Ψ=  (17) 

and 

 ( ) ( ) ( ) ( ) ( )zyxtqzyxtqtzyxw lljj ,,,,,,, Ψ−Ψ= . (18) 

Finally, the coefficients 
)3(

iljpK  can be evaluated from the single assumed displacements 

field 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )zyxtqzyxtqzyxtqtzyxw pplljj ,,,,,,,,, Ψ+Ψ+Ψ= . (19) 

It should be noted that the above procedure for the evaluation of the coefficients is exact, 

the only approximation in the reduced order modeling is the modal expansion of Eq. (3). 

 

The above procedure has been described for an arbitrary basis ( )zyxj ,,Ψ , j = 1, ..., N, 

but these functions must be defined to obtain numerical results. Further, the closeness of 

the ROM results to their finite element counterparts can be expected to be dependent on 

the choice of the functions ( )zyxj ,,Ψ . Since the present problem focuses mainly on the 

transverse vibrations of the panel, it is appropriate to include in the set ( )zyxj ,,Ψ  

functions such as the mode shapes of the panel under small deflections around one of its 

typical configuration, e.g. unbuckled or buckled. These functions represent a basis for the 

transverse deflections but unfortunately do not include any in-plane motions. In large 

deflections, a coupling of the transverse and in-plane deflections exists with the latter 

inducing the “membrane” stiffening effect. It is thus necessary to include both in-plane 

and transverse displacement bases in the set ( )zyxj ,,Ψ . 
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In this regard, it should be noted that 
 

(i) the in-plane motions are typically induced by their transverse counterparts and 

exhibit an amplitude that is related in first approximation to the square of the out-

of-plane displacements, 

and 
 

(ii) the natural frequencies of the in-plane modes (for a flat panel) are generally much 

higher than their transverse counterparts so that the in-plane problem is, to first 

order, a static one. 

 

On this basis, it has been proposed (Mignolet et al., 2003) to rely on a dual basis iΨ  = 

( iΨ̂ , iΨ ) in which iΨ̂  would be represent the selected transverse modes of the linear 

panel and iΨ  would be representative of the second order, in-plane displacements 

induced by iΨ̂ . These functions would be obtained from the static nonlinear response of 

the panel to transverse loads  p iΨ̂ . Specifically,  consider two different values of p, i.e. p 

and 2p, where p is referred to as the load factor. Then, the corresponding two 

displacement fields (each including both in-plane and out-of-plane components) 1w  and 

2w can be combined to form iΨ  through an elimination of the linear (out-of-plane) 

terms, e.g. as 

 12 2 wwi −=Ψ . (20) 

Note that a similar discussion has been conducted by Gordon et al. (2003) to justify the 

use of in-plane modes (referred to as the dual basis above and as the companion by 

Gordon et al. (2003)). 

 

The above discussion focused on the representation of the nonlinear terms in the ROM. 

The coefficients of the linear terms, i.e. M , C , 0F , and )(tF  must also be determined. 

In fact, from the formulation of the ROM as a Galerkin approximation, it is found that the 

components of these matrices and vectors are 
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 j
T
iij MM ΨΨ= ;     j

T
iij CC ΨΨ= ;     0,0 FF T

ii Ψ= ;    and ( ) ( )tFtF T
ii Ψ= . (21) 

To use the first two relations, the global mass and damping matrices (M and C) of the full 

finite element model are written during a SOL 103 analysis using a standard DMAP alter 

and the matrix-vector products are evaluated as shown above.  

 

Similarly, the reduced order model external forces, 0F  and )(tF , are obtained by forcing 

the writing of the nodal forces in one or a series of static (SOL 101) MSC.NASTRAN 

analyses, the above inner products are then computed. To exemplify the latter process, 

consider for example the case of an acoustic pressure at normal incidence for which 

 ( ) ( )tpvtF =  (22) 

where v  is a constant (with respect to time) vector. From Eq. (21), it is then found that  

 ( ) [ ] ( ) ( )tptpvtF i
T
ii 0,µ=Ψ=  (23) 

so that it is only required to evaluate the inner products of each of the modes with the 

vector v  which in fact represents the nodal forces of the finite element model to a unit 

pressure. In the case of an acoustic excitation at non-normal incidence, Eq. (22) and (23) 

take the form of 

 ( ) ( )∑ τ−=
j

jj tpvtF  (24) 

 ( ) [ ] ( ) ( )∑∑ τ−µ=τ−Ψ=
j

jji
j

jj
T
ii tptpvtF ,  (25) 

where the time shifts tjj ∆=τ  are associated with the propagation of the wave along the 

panel. The computation of the coefficients ji,µ  is achieved through a linear quasistatic 

solution (e.g. as a series of SOL 101 in MSC.NASTRAN) in which the degrees-of-

freedom of the panel are blocked and with an excitation corresponding to an acoustic 

pulse of unit magnitude, of duration ∆t, and initiated at t = 0 in the direction of 

propagation of the actual excitation. The reactions at time tjj ∆=τ  at the blocked 

degrees of freedom (after a sign change) represent the vectors jν . Premultiplication of 

these vectors by T
iΨ  then yields the force ROM coefficients ji,µ . 
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Steps 3 to 5 proceed from the reduced order modeling and from simulated time histories 

of the random acoustic excitation. The generation of these time histories is accomplished 

by modeling the process p(t) as an autoregressive process for which 

 mnmnnnn papapawbp −−− −−−= …22110 . (26) 

In the above equation, ( )tnppn ∆= , n = 1, 2, 3... are the generated sampled values of 

the excitation process, nw  are independent Gaussian random numbers forming a discrete 

white noise process, and 1a , 2a , ..., ma , 0b  are fixed, deterministic coefficients. This 

representation was selected because 
 

(1) the generation of a new sample of the excitation process from the m prior ones is 

accomplished extremely efficiently from Eq. (26), 
 

(2) the autoregressive coefficients 1a , 2a , ..., ma that yield the best match between 

the generated output of Eq. (26) and a given stationary process are evaluated 

through the solution of a linear system of algebraic equations, 
 

(3) the autoregressive representation converges to any non-predictable process as 

∞→m , and 
 

(4) the representation of Eq. (26) is extendable to multivariate and multidimensional 

processes. 

 

The input to the simulation step is thus the coefficients of the autoregressive model and 

the order m of the recursion. The generation of stationary samples of the acoustic 

excitation process p(t) can then be accomplished in two ways: 
 

(a) the recursion of Eq. (26) is marched forward in time from a set of initial 

conditions, e.g. zero, until the transient associated with these initial conditions has 

decayed sufficiently, or 
 

(b) by simulating random initial conditions consistent with the autocorrelation 

function of the autoregressive process. 
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Note in the latter approach that all samples generated correspond to the stationary 

behavior. See Mignolet (1987) for a complete description of the autoregressive 

simulation algorithm. 

 

Once the samples of the excitation have been generated, the simulation of the panel 

response (step 3) is accomplished by numerical solving the nonlinear equations of motion 

of the reduced order model, Eq. (4). Currently, this step is accomplished using the 

subroutine DIVPRK from the IMSL library. 

 

The time histories of the response coordinates jq  can then be inserted in Eq. (5) to yield 

the corresponding records of the stresses. 

 

Finally, these time histories are transmitted to the rainflow analysis code of Downing and 

Socie (1982) that yields a series of stress ranges jR  from which the accumulated damage 

over the simulation time is evaluated according to one of the five damage accumulation 

rules implemented (Palmgren-Miner, Marko-Starkey, Marin, Schaff-Davidson, Hashin). 
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3. DETAILED DESCRIPTION OF THE CODE ELSTEP/FAT 

 
In fact, ELSTEP/FAT is not a single code but rather a series of FORTRAN executables 

and MSC.NASTRAN solutions. Figure 2 provides a global flowchart of ELSTEP/FAT 

while Table 1 is a detailed description of the different steps involved with each input, 

output, and a short description. These different steps can be run automatically in 

succession with the aid of the script and make files described in Table 2. 

 

Through these various steps, a series of temporary files are created but the following 

denote the true input and output files of the process.  

 

3.1 Input Files 

 
ssplate_eg.bdf: MSC.NASTRAN input file providing the geometry, material description, 

and specifications of boundary conditions for the problem. The file is used 

repeatedly for various different solutions and thus does not contain the specification 

of a particular solution number. 

 

fixed.mod: Input file providing the specifications for the reduced order modeling and for 

the time history computations, see Table 3. 

 

nlparam.dat: File providing MSC.NASTRAN commands to be used for the construction 

of a finite element input file, see Table 4. This file is not to be changed by the user 

unless there is a change of MSC.NASTRAN version. 

 

S_A_B.dat: Input file specifying the autoregressive (AR) model of the acoustic excitation 

process, see Table 5. 

 

wn_file.dat: Input file providing the time history of the white noise to be used in 

conjunction with the AR model to produce the acoustic loading, see Table 6. 
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Damage accumulation input file: An input file is needed to specify the parameters of the 

damage accumulation rule (for estimation of the accumulated damage/fatigue life). 

There is a different file for each of the damage rules currently implemented, i.e. 

Palmgren-Miner (Palmgren_Miner.dat), Marko-Starkey (Marko_Starkey.dat), Marin 

(Marin.dat), Schaff-Davidson (Schaff_Davidson.dat), and Hashin (Hashin.dat), see 

Table 7. 

 

In addition to the files above, there is a series of short header files that provide essential 

parameter values (e.g. flags) for the computations. These header files are: 

 

Param.h: State maximum values of the number of elements, number of nodes, number of 

degrees of freedom, number of modes shapes to be determined in the SOL 103, and 

number of transverse modes used in the reduced order model, see Table 8. 

 

Ldamplif.h: Provides the value of the load amplification factor p. See Table 9. 
 

Solve.h: Specifies the critical parameters for the numerical integration of the reduced 

equations of motion. See Table 10. 

 

Center.h: Specifies the node of which the displacement is to be outputted. See Table 11. 

 

Rainflow.h: Provides the basic inputs for the rainflow cycle counting and for the selection 

of the damage accumulation rule. See Table 12. 

 

135



15 

 

SOL 106 

nlcfgb.f nlcfsig.f 

nlcf0.dat, nlcfA.dat,
nlcfS.dat 

(stiffness coefficients 
of Response ROM ) 

nlcfsig.out 
(coefficients of Stress 

ROM ) 

redmass.dat 
(mass matrix of 

Response ROM ) 

STRESS ROM 

Legend 
 input file   ROM file  FORTRAN code  NASTRAN run 

fixed106_st.bdf fixed106b.bdf 

SOL 106 

RESPONSE ROM

redcm.dat 
(damping matrix of 
Response ROM ) 

redmass.f 

cases q  cases q̂  

SOL 106 

gendisp.f 

gendual.f dual mode 
characterization

dual mode basis

displacement fields 
for nonlinear analyses

prep106b.f prep106.f 

nlparam.dat 
mode specifications prep st.f

filename_st.bdf 

fixedd.mod 

Finite element input deck 
filename_eg.bdf 

prep103g.f 

transverse linear 
modes unbuckled 

panel 

fixed106_dual.bdf

fixed.mod 
mode specifications

fixed103_eg.bdf 

SOL 103 

global mass 
matrix 

K_FT.dat 
(pressure coefficients 
of Response ROM ) 

prep106dual.f 

prep101r.f

fixed101_react.bdf SOL 101 

genalpha.f 

PRESSURE ROM

 
 

Figure 2a. Global flowchart of the reduced order modeling (ROM) part of ELSTEP/FAT 
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Figure 2b. Global flowchart of ELSTEP/FAT 
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No. File name Input Output Purpose 

1 
prep_st.f => 
prep_st.exe 

ssplate1_eg.bdf ssplate1_st.bdf Prepare the MSC.NASTRAN 
input file for the forces 
computations 

2 
prep103g.f ssplate1_eg.bdf fixed103_eg.bdf Create the input file for 

MSC.NASTRAN eigenvalue 
analysis 

3 

fixed103_eg.bdf   
egvec.dat 
egvecH.dat 
gmass.dat 

Obtain the following: 
- N eigenvectors (formatted) 
- N eigenvectors 

(unformatted) 
- mass matrix 

4 

prep106dual.f => 
prep106dual.exe 

ssplate1_eg.bdf 
fixed.mod 
egvec.dat 

fixed106_dual.bdf Create the input file for 
MSC.NASTRAN nonlinear analysis. 
There are 2N subcases 
corresponding to N distributed load 
profiles. The N load profiles 
duplicate the N eigenvectors. The 
2N loads correspond to two 
different scale factors. 

5 

fixed106_dual.bdf  fixed106_dual.pch Contains the 2N 
displacements/deformations 
obtained from the MSC.NASTRAN 
nonlinear analysis 

6 

gendual.f => 
gendual.exe 

fixed106_dual.pch 
fixed.mod 
egvec.dat 

 
fixedd.mod 
egvecd.dat 

Creates the new parameter file 
(fixedd.mod) and the eigenvectors 
file in alternating order (linear 
eigenvectors and their dual). The 
dual modes contain only the Tx,Ty 
and Rz dof. 

7 combinat.f param.h combin.h Creates the header file fo 
gendispg.f, nlcfgb.f and nlcfsig.f. 

8 

gendispg.f => 
gendispg.exe 
 

fixedd.mod 
egvecd.dat 

displ.pr2 
displ.pr3 
displ.inn 
dispL.inn 
egveCa.dat 

Multiply the eigenvectors by the 
scale factors from fixedd.mod and 
obtain the linear combinations of 
loads for nonlinear analysis 

9 

prep106.f => 
prep106.exe 

ssplate1_st.bdf 
egveCa.dat 
displ.pr2 
displ.pr3 

fixed106_st.bdf Create the input file for 
MSC.NASTRAN nonlinear analysis 
(cases q ) 

10 

fixed106_st.bdf  f_N.frc 
displ.inn 
fixed106_st.pch 

Obtain displacements & forces 
corresponding to the linear 
combinations of the eigenvectors 
(including duals) 

11 
prep106b.f => 
prep106.exe 

ssplate1_st.bdf 
egveCa.dat 
nlparam.dat 

fixed106b.bdf 
fixed106b.pch 

Create the input file for 
MSC.NASTRAN nonlinear analysis 
(cases q̂ ) 

 
Continued on the next page
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12 
fixed106b.bdf  f1_L.frc 

displb.inn 
Obtain displacements & forces 
corresponding to the q̂  
(including duals) 

13 

prep101ri.f => 
prep101ri.exe 

fixed.mod 
egvec.dat 
wave.dat 
WN_FILE.DAT 
(noise) 

fixed101_reacti.bd
f 
nint.h 

Create the input file for 
MSC.NASTRAN linear analysis 
under uniform pressure; all the 
T3 dof are constrained.  
Create the header file containing 
the number of intervals Nint 
resulting from load inclination. 

14 fixed101_reacti.bdf  fixed101_reacti.pch Obtain the nodal reaction forces 
to the uniform pressure load. 

15 

genalphai.f => 
genalphai.exe 

egveCa.dat 
fixed101_reacti.pch 

K_FT.DAT Obtain the 2NxNint load 
coefficients (α) by multiplying the 
reaction force with the 2N 
eigenvectors 

16 

nlcfgb.f => 
nlcfgb.exe 

egveCa.dat 
fixedd.mod 
displ.pr2 
displ.pr3 
f1_L.frc 
f1_N.frc 

nlcf0.dat 
nlcfA.dat 
nlcfS.dat 

Obtain the linear quadratic and 
cubic  stiffness coefficients 
respectively. 

17 
nlcfsig.f => 
nlcfsig.exe 

fixedd.mod 
fixed106b.pch 
fixed106_st.pch 

nlcfsig.out Obtain the stress coefficients 

18 

redmass.f => 
redmass.exe 

gmass.dat 
egveCa.dat 
fixedd.mod 
nlcf0.dat 

REDMASS.DAT 
REDCM.DAT 
egvec_selmds_col
s.dat 

Obtain the reduced mass and 
damping matrices. 
Arrange selected modes in 
columns.  

19 

solve.f => 
solve.exe 

nlcf0.dat 
nlcfA.dat 
nlcfS.dat 
S_A_B.DAT 
REDMASS.DAT 
REDCM.DAT 
K_FT.DAT(α) 
WN_FILE.DAT 
(noise) 

DISPL.OUT Obtain the displacement/time 
history. 

20 

cntrldspl.f => 
cntrldspl.exe 

egveCa.dat 
egvec_selmds_cols
.dat 
DISPL.OUT 

PHSDSP.OUT Obtain the physical 
displacement/time hystory in the 
center of the panel. 

21 

genstress.f => 
Genstress.exe 

egveCa.dat 
nlcfsig.out 
WN_FILE.DAT 
DISPL.OUT 
fixedd.mod 

STRESS.OUT Obtain the stress time history 

22 
rainflow.f => 
rainflow.exe 

STRESS.OUT 
“damage input file” 

damage.dat 
range.dat 

Computes the damage 
accumulated and the range 
information 

 
Table 1. Detailed characteristics (input, output, description) of the various FORTRAN 

executables and MSC.NASTRAN input files  
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The xdoit.bat file: 
fl32 prepst.f 
prepst.exe 
fl32 prep103g.f 
prep103g.exe 
C:\Msc\bin\nastran.exe fixed103_eg.bdf scr=yes news=no 
fl32 prep106dual.f 
prep106dual.exe 
C:\Msc\bin\nastran.exe fixed106_dual.bdf scr=yes news=no 
fl32 gendual.f 
gendual.exe 
fl32 combinat.f 
combinat.exe 
fl32 gendispg.f 
gendispg.exe 
fl32 prep106.f 
prep106.exe 
C:\Msc\bin\nastran.exe fixed106_st.bdf scr=yes news=no 
fl32 prep106b.f 
prep106b.exe 
C:\Msc\bin\nastran.exe fixed106b.bdf scr=yes news=no 
fl32 prep101r.f 
prep101r.exe 
C:\Msc\bin\nastran.exe fixed101_react.bdf scr=yes news=no 
fl32 genalpha.f 
genalpha.exe 
fl32 nlcfgb.f 
nlcfgb.exe 
fl32 nlcfsig.f 
nlcfsig.exe 
fl32 redmass.f /math_library:check smathd.lib 
redmass.exe 
fl32 solve.f /math_library:check smathd.lib 
solve.exe 
fl32 cntrdspl.f 
cntrdspl.exe 
fl32 genstress.f 
genstress.exe 
fl32 rainflow.f 
rainflow.exe 

 
Note: xdoit.bat is valid for the following software configuration: 
•  PC/Windows 2000;  
•  Compaq Visual Fortran Standard Edition version 6.5.0;  
•  IMSL Fortran 90 MP Library version 3.0 for Microsoft Windows NT(R) and 

Microsoft Windows95(R) running Digital Visual Fortran;  
•  MSC.Nastran VERSION - 2001.0.7. 
 

 
Table 2. Description of the script file 
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3.2 Output Files 
 
nlcf0.dat: Output file containing the linear stiffness terms )1(

ijK  printed according to the 

format (( )1(
ijK , j = 1, ..., N), i = 1, ..., N), see Table 13. 

 

nlcfA.dat: Output file containing the quadratic stiffness terms ((( )2(
iljK , j = l, ..., N), l = 1, 

..., N), i = 1, ..., N), see Table 14. 
 

nlcfS.dat: Output file containing the cubic stiffness terms  (((( )3(
iljpK , p = j, ..., N), j = l, ..., 

N), l = 1, ..., N), i = 1, ..., N), see Table 15. 
 
redmass.dat: Output file containing the mass matrix of the reduced order system written 

as (( ijM , j = 1, ..., N), i = 1, ..., N) with N written on the very first line, see Table 16. 
 
redcm.dat: Output file containing the damping matrix of the reduced order system written 

as  (( ijC , j = 1, ..., N), i = 1, ..., N), see Table 17. 
 

nlcfsigout.dat: Output file containing the stress reduced order terms )0(S , )1(
iS , )2(

ijS  for 

each of the stress components at every point. This data is written by blocks formatted 
as follows (see Table 18): 

 
element number      node number within element face number    stress number 

)0(S  

( )1(
iS , i = 1, ..., N) 

(( )2(
ijS , j = i, ..., N), i = 1, ..., N) 

 
where 
 element number = number of the element which contains the node of interest 

 node number within element = number ranging from 1 to 4 for CQUAD4 element, 
denotes which of the nodes of the element is of interest 

 face number = 1 for the lower face or 2 for the upper face 
 stress number = 1 for xxσ , 2 for yyσ , or 3 for xyτ  
 
displ.out: Output file containing the time histories of the N modal coordinates iq  at the 

first time step, the second time step, etc., see Table 19. 
 
stress.out: Output file containing the time histories of the user selected stress written as 

(see Table 20): 
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    time step number  stress value at that time step 
 
range.dat: Output file containing the rainflow ranges and their starting and ending points 

(peaks or valleys), see Table 21. 
     rainflow range  starting point  ending point 
 
damage.dat: Output file containing a single number which represents the accumulated 

damage for the given excitation and damage accumulation rule, see Table 22. 
 
 
 
  3       = number of transverse modes selected (N/2) 
  1     5     7     = number of the N/2 modes to be selected 
  1.e-4 1.e-4 1.e-4   = scaling factors iq  of the transverse modes 
  2.       = common ratio of scaling factors ii qq /ˆ  
     0.01     = common damping ratio of all modes 
     65     = number of the element which contains the 
         node of interest for stress computation* 

     3     = node number within element of which the 
         stress is to be computed*

 

     1     = face number (up/down) of the node*
 

     1     = stress type (1-3) *
 

   0.0      0.0    = initial and actual temperatures of the panel 
 
* See description of these input in the specifications of the file nlcfsigout.dat 
 
 

Table 3. Input file fixed.mod  
 
 
 
 
 
 

NLPARM = 1                                                                    
NLPARM   1       1               AUTO    1       1       PW      NO     
           1.+13   1.+13   1.+13                             0.9         *    B 
MATS1    1               PLASTIC 99999.9    1     1     1.E30 

 
 
 

Table 4. Input file nlparam.dat 
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  1    0.   1.                       = values of the autoregressive order m (1 
here), the autoregressive coefficients ia  
(here only 1a ), and value of 0b . 

 
 
 

Table 5. Input file S_A_B.dat 
 

 

32262     1.363277164103491e-002    = number of time steps and time step (∆t) 
461.761828      4.27E-02  = value of nw  at first time step 
416.2953629         = value of nw  at second time step 
251.6654559            . 
-31.98876518           .  
551.9573821            . 
319.9525911      
277.6953788      
-197.1800686     
179.6904642      
797.1929697      
528.3447662      
-847.3506325     
205.0921062      
-875.0819954     
-299.5584699     
669.3796228      
1931.050537      
-1651.506464     
-1219.581612     
-847.6017105     
5.167880676      
1311.542806      
-1521.742181     
-1047.130011     
394.8680324      
-38.50517847     
389.2109615      
-317.7760543     
-1653.794445     
-1371.942124     
-895.1431199     
 .  
 .  
 .  
 

Table 6. Input file wn_file.dat 
 
 
1.0    1.0       = constant K; exponent m 
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(a) 
 

1.0   1.0     = constant K; exponent m 
0.0   10000000000.0   5   = lower limit of lowest range,  
      = upper limit of highest range, 
      = number of different range domains 
1.0      = exponent in first range 
1.0      = exponent in second range 
1.0      = ... 
1.0      = ... 
1.0      = exponent in last range 

(b) 
 
 

1.0    1.0       = constant K; exponent m 
0.0      = exponent q 

(c) 
 
 

1.0     1.0     = constant K; exponent m 
1000000000.0    = static strength at zero fatigue  
        damage 
0.0   10000000000.0   5   = lower limit of lowest range,  
      = upper limit of highest range, 
      = number of different range domains 
1.0      = exponent in first range 
1.0      = exponent in second range 
1.0      = ... 
1.0      = ... 
1.0      = exponent in last range 

 (d) 
 

1.0    1.0     = constant K; exponent m 
1.0    100000000000.0   = exponent A, static strength at 
        zero fatigue damage 

(e) 
 

Table 7. Input files for fatigue damage accumulation Palmgren_Miner.dat (a), 
Marko_Starkey.dat (b), Marin.dat (c), Schaff_Davidson.dat (d), and Hashin.dat (e) 

 
 
 
     PARAMETER(MAXEL=141,MAXNOD=166,NSX=MAXNOD*6,NEIGX=30,NSELX=3) 
C     MAXEL = MAX NUMBER OF ELEMENTS 
C     MAXNOD = MAX NUMBER OF NODES 
C     NSX = MAXIMUM NUMBER OF DOF 
C     NEIGX = MAX NUMBER OF EIGENVECTORS IN SOL 103 
C     NSELX = MAX NUMBER OF SELECTED EIGENVECTORS 

(a) 
 

Table 8. Header files param.h 
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      PARAMETER(ald1=60.) 
C  ALD1 is the load factor 
 

Table 9. Header files ldamplif.h 
 
 
 

       PARAMETER (MXPARM=50,NTP=5000,MODE=6,NFORC=100,NDX=0) 
C      MAXPARM = maximum number of parameters DSET subroutine (IMSL) 
C      NTP = maximum number of wave passes (for the inclined wave) 
C      MODE = number of modes (includes dual modes) 
C      NFORC = number of time steps (i.e. size of force vector) 
C      NDX = solver method selector 
C              if 0 full solution 
C              if 1 static condensation 
 

Table 10. Header files solve.h 
 
 
 

       PARAMETER(nodx=107,ndofx=3) 
C      - nodx is the node for which displacement is computed. 
C      - ndofx is the DOF for which displacemnt is computed; it 
C      can have the following values: 
C        - 0 for z-rotation; 
C        - 1 for y-rotation; 
C        - 2 for x-rotation; 
C        - 3 for z-displacement; 
C        - 4 for y-displacement; 
C        - 5 for x-displacement. 
 

Table 11. Header files center.h 
 
 
 

        INTEGER NFORC,OPTION,ICYCLE 
        PARAMETER(NFORC=100,OPTION= 1,ICYCLE=1) 
C       NFORC = number of time steps (i.e. size of force vector) 
C       OPTION 1 stands for Palmgren-Miner linear accumulation rule 
C       OPTION 2 stands for Marko-Starkey nonlinear accumulation rule 
C       OPTION 3 stands for Marin nonlinear accumulation rule 
C       OPTION 4 stands for Schaff_Davidson nonlinear accumulation rule 
C       OPTION 5 stands for Hashin nonlinear accumulation rule 
C       ICYCLE: Flag to specify the chronological order of the cycles 
C            ICYCLE = 1 cycles ordered by their beginning 
C            ICYCLE = 2 cycles ordered by their ending 
 

Table 12. Header files rainflow.h 
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  5.8020293311736488E+05  -1.8759237548139101E-12   1.3475046588665757E+01 
  1.2040322002605539E-12  -5.0756547551017889E+01  -1.2270718849426023E-12 
 
  1.8845122445106013E-03   2.9923760192455537E+00  -1.7235498245119146E-02 
  6.9605760645760226E-02  -6.0749780912502792E-02  -1.3195668150940737E-01 
 
  3.3171663851354005E-01   8.8608248125169263E-12   5.9761163946617907E+06 
 -1.3709827718730106E-12  -1.6546700605207000E+01  -2.3265746678935267E-12 
 
 -1.7324277028405734E-04   6.9605760634427055E-02   4.4141362146924552E-02 
  9.8700447113337897E-01   9.0590423490036053E-03   4.4316607278758455E-02 
 
 -3.7793202079860377E-01   2.5558904193437080E-14  -4.1776973839192486E+00 
 -1.8676842609452491E-14   1.1711383392185265E+07   1.1629621115699973E-14 
 
 -1.8973425066744139E-04  -1.3195668149600231E-01   3.9663562468470887E-03 
  4.4316607301433816E-02   8.6557049903377536E-02   5.3570987883497878E-01 
 
 

Table 13. Output file nlcf0.dat (N = 6) 
 
 

 -1.0057284499546413E-05   3.2246712137787258E+06  -1.9287393414799365E-05 
 -9.2717216525462398E+04   4.4486252693209558E-05  -7.1626356127908002E+04 
 -5.2296825961998116E-16  -2.7221554291209215E+06  -6.7757541180097950E-16 
  4.5904809029118586E+06  -1.0346867746825816E-16 
 -7.2995752697588800E-06   7.6859925056394935E+05  -1.2017118860560439E-05 
  3.9871623412026337E+05 
 -1.9052691269225598E-16  -5.0714900084930082E+05   8.7249060112383340E-17 
 -2.1421897646329606E-05  -1.5905917901461220E+06 
 -1.1622283696159962E-16 
 
  1.6123758982490064E+06   5.3029263723017784E-06  -2.7220930381418401E+06 
  4.6129426390267002E-07   4.5904804400511924E+06  -1.1037765078195388E-07 
 -4.7312717851138215E-07   5.9617900893815792E-06  -1.1444680574580435E-06 
  2.4048471547466472E-06   5.2016138604002936E-06 
 -1.7838763563694074E+06  -1.2993563891460862E-06  -3.3788678166054090E+05 
 -2.9096583407809140E-07 
  2.5643302058452994E-06  -2.2109397646019599E-07   1.7940738992801374E-07 
 -4.8625978927895688E+06  -6.7949784403457409E-06 
  4.7823270315368404E-07 
 
 -1.6954551297087542E-07  -2.7223642537101163E+06  -3.8794763826307815E-05 
  7.6889181834117603E+05   2.3886300444719096E-05   3.9878314353883616E+05 
 -4.8149017878976384E-16  -3.5671591767214597E+06  -5.2235947016684001E-16 
 -3.3911774826446443E+05   3.3411432914429115E-16 
 -3.0003694153293738E-05   1.1916683515505107E+07  -2.0397624823670137E-05 
  9.5396679285520036E+05 
 -2.5533672788310394E-17   5.6557613272768824E+04   6.0208370127147288E-17 
 -3.1199170877591086E-05   2.7225313277769316E+05 
 -2.8930505487255426E-16 
 
 -4.6359008667986018E+04   2.3481237461625160E-07   7.6817009303951426E+05 
  6.4796489492709874E-08  -5.0727180231726915E+05   8.1622762419718827E-08 
 -5.7243789774524537E-07   7.2649386506640204E-06   5.1276018943662309E-06 
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  1.6588900392244808E-06   1.7967768735842663E-07 
  5.9592584941695686E+06   6.1254021201273335E-06   5.5410395657202149E+04 
  2.0721186317066345E-07 
  5.5415181833147200E-06   2.4257679198669274E-07  -4.0790516208326197E-06 
  6.3213758938870940E+05   1.2071359650227864E-06 
 -1.1464887634144153E-06 
 
  4.6305623030544968E-08   4.5921395951387631E+06  -3.2616701660767785E-06 
 -5.0745041383088677E+05  -1.7162998120796696E-07  -1.5919924366951694E+06 
 -2.1532536708430528E-19  -3.3872752884595876E+05  -1.9422663624743607E-18 
 -9.7227894163999092E+06  -2.8983903354026818E-18 
 -7.8918565310103689E-08   5.6285062040773060E+04  -1.1045730652998513E-07 
  2.7193663649057306E+05 
 -1.5647776276172158E-18   1.2638991912205322E+06   1.0661509672322732E-18 
  2.0153952124346247E-07   1.2235405868083838E+07 
  1.0645951512019171E-19 
 
 -3.5819464001635570E+04  -2.0824039717465851E-09   3.9869311920906202E+05 
 -6.0473362355106833E-09  -1.5910012931940129E+06   2.5406580607224273E-07 
  2.6006470032889666E-06   2.8249191180718109E-07   1.7960980144451357E-07 
  3.5231470518759518E-06   9.5737800764734671E-07 
  4.7705625574327126E+05   5.4202190349601381E-07   2.7140680671319249E+05 
  2.3169513738669754E-07 
 -2.0393053626724085E-06   2.6174895584318842E-07  -2.2927028823660306E-06 
  6.1195318922005398E+06   9.0133146661615709E-06 
  4.5016740655781134E-06 
 
 

Table 14. Output file nlcfA.dat (N = 6) 
 
 
 

  1.0658427051387697E+13   1.0749073551177545E-06   1.6640989461793127E+13 
 -3.6997715321713218E-05  -2.1863115418560840E+13  -1.8756942557296653E-03 
 -4.0587596288332861E+03  -3.5534595768172592E+06   3.9092448527753965E+02 
 -6.6468710776886027E+06   8.4183908155003303E+02 
  6.9883327299441992E+13  -6.6920165048628235E+06  -3.2499648542634129E+13 
 -2.3229450087981534E+05 
 -9.7032209396274993E+02  -2.6889789196299011E+05  -1.4108621824076869E+02 
  1.1663690114255744E+14  -8.0034151498487797E+06 
 -7.1151309697370380E+02 
 -1.0753025845329979E-18   5.2463921599260436E+02  -3.2592040734695770E-18 
 -1.8557468409573924E+03   3.4901052381495772E-18 
  1.0097820031687718E-03   3.0638471012030914E+03  -2.8685160021909084E+06 
  1.7537211193998299E+01 
  6.2314994357102719E-18  -4.4508245601211638E+02  -8.7509302626471194E-18 
 -1.4718159013785725E-08  -2.8113688774425973E+03 
  2.9576414820653095E-18 
  3.1760826871095449E+13  -7.1604715349121357E-06  -5.3033580847748500E+13 
  1.1148332046148044E-02 
 -4.4156503696862922E+02   2.5194149556085826E+06  -3.3548567994146242E+02 
  6.1977795206595266E+13  -2.4910105729103875E+06 
 -1.0795002934921479E+02 
  2.0622693879842325E-18   2.6700015056009551E+02   4.9449477631071342E-18 
 -1.1943775708658020E-04   2.7116251203938282E+02 
  4.6510702546415298E-18 
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 -7.6227447485448750E+13  -1.6377901624012705E-06 
  2.3249754674759674E+03 
 -1.0135602595531256E-17 
 
 -1.8845122445106014E+05  -4.0584631404855240E+03   1.8777693387775349E+06 
  1.9536868440519703E+02   1.6100940519181420E+06   4.2091444910248578E+02 
  5.3029263722894043E-04   1.0544441530440492E+03   4.2649271701084006E-05 
 -3.7056189671801130E+03   1.0220340199151854E-05 
 -1.8777693387594237E+06   3.0608723397508238E+03  -5.8932556137884371E+06 
  1.7097057886193006E+01 
  4.6129773335618780E-05  -4.4548877285436873E+02   1.1770380677067481E-05 
 -1.6100940519451343E+06  -2.8130007253168892E+03 
 -1.0561063066772720E-05 
 -3.3893107428303019E-08  -5.9617916551219831E-04  -8.0153331888377353E-08 
 -2.4048471555936806E-04   1.1316707120012647E-07 
 -1.2560860648755390E+04   1.4523835042620779E-03  -9.9691549077739965E+03 
  5.4983947082865012E-05 
  2.7491897647280434E-07   3.2200999924850084E-04  -6.8825067173206012E-07 
 -1.8479689015866996E+04   6.9276932281037140E-04 
  1.8286760994357107E-07 
  1.7235498245119147E+06   9.2380614102882669E+02  -9.2341384123929869E+06 
  1.4146361248168134E+03 
 -1.2993563892718695E-04   1.3904215545419386E+03  -1.8948449580225010E-04 
  9.2341384124633651E+06   1.5305279959100353E+03 
 -2.8562982498138174E-05 
 -1.6508212276017876E-07   2.2109253396308684E-05   3.5915584742363111E-07 
  1.5546982958371345E+03  -1.5534043235759795E-04 
  2.3553479045618217E-07 
  6.0749780912502790E+06   5.1559316561491059E+03 
 -6.7949784415081700E-04 
 -3.2753388112317417E-07 
 
  5.5485144731379756E+12   6.5368305291689229E-06   6.9874648175989938E+13 
  5.7162219320564970E-05  -1.6238322930222463E+13   5.8748108780223157E-03 
  5.2485852046275556E+02   1.5361361879513422E+07   3.0644929634769760E+03 
 -3.2294457807046962E+06   1.7399795281117971E+01 
  9.5271294624470828E+13  -1.9536597147725165E+07  -1.0609065372623009E+14 
 -2.9675214384444100E+06 
 -4.4160357282534954E+02  -7.2282556023412314E+05  -3.3562093714204644E+02 
  6.1981623651868828E+13  -3.3109084648296596E+06 
 -1.0800605450483074E+02 
  1.7764213999273242E-18  -1.2564229848521791E+04  -2.2164672185649078E-18 
 -4.9901387408426062E+03  -1.4766624175959700E-18 
 -8.2138218659624492E-04   1.8512108467870451E+03   2.2051981571169809E+07 
  2.8299368091739734E+03 
 -1.0207607678070220E-18   1.3924001848932694E+03   3.8177144389224320E-18 
 -7.6572255845233655E-08   1.5332442786385375E+03 
 -1.9904538360536567E-20 
  2.3352875898035891E+14   4.8280435123563718E-05  -1.4618506389891164E+13 
 -3.1464209886170949E-02 
 -8.7315129803755553E+03  -1.6971989489862587E+07  -1.1930488162165532E+03 
  2.5426118092015906E+14  -1.6500511675750127E+07 
 -5.7629159755379078E+02 
  9.3724813578739065E-18  -4.6705038027857523E+02  -6.4092739738672581E-19 
  7.9138131934609166E-05   7.1567868309274076E+01 
 -1.8780884887139757E-18 
 -1.4095933493022818E+13  -3.2649258555762036E-06 
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 -3.2961876647217245E+01 
 -8.7916879144881316E-18 
 
  1.7324277028405737E+04   1.9533906164262078E+02   3.0412032796019875E+06 
 -9.6953682205899725E+02   2.6630775938792125E+05  -7.0635609779345387E+01 
  2.3481237461409322E-05   3.0610310190906921E+03   1.0816538636992944E-04 
 -4.4594818839441103E+02  -1.2693128883037306E-05 
 -3.0412032796021467E+06  -8.8037959002779110E+02   3.7267528736162395E+06 
 -3.3483205619862667E+02 
  6.4796055808428767E-06   5.3624336107811916E+02  -3.4987149895998595E-06 
 -2.6630775938894844E+05   2.7181815190444479E+02 
  8.5325095993798695E-06 
  9.1027700562235109E-08  -7.2649392385048866E-04   1.2153646145041105E-07 
 -1.6588900390127227E-04   2.5090368151181592E-07 
  9.2240593166305507E+02  -2.5409448850544075E-04   1.3896740172484629E+03 
 -1.9213394980913121E-04 
  2.4793426860181262E-07  -4.4966377688027815E-05  -5.7813600911824071E-07 
  1.5553315874897601E+03  -1.4631313738702742E-04 
 -1.1638227274263223E-07 
 -4.4141362146924557E+06  -8.7307462845465088E+03   8.8656428683050759E+06 
 -5.9649845442493086E+02 
  6.1254021213580758E-04  -9.3266874883825108E+02   1.0560376900205225E-04 
 -8.8656428683610614E+06   7.3620278519259671E+01 
  2.1148622234695973E-05 
 -1.0826262983986843E-06  -2.4257792034045766E-05   3.6206194292676125E-07 
 -1.2459861189681453E+03   5.5371636095702379E-05 
  4.2060105398533660E-07 
 -9.0590423490036058E+05  -9.5861481821946086E+02 
  1.2071359652366387E-04 
 -1.5410305915560140E-07 
 
 -7.2917611857502207E+12   6.3258937777452590E-06  -1.6242507498206141E+13 
 -6.6966143266576983E-05   1.1661138086351866E+14  -4.5619591472720296E-03 
 -1.8551989926508068E+03  -5.6862028017585771E+06  -4.4553531503346426E+02 
 -4.3089767127639778E+07  -2.8142107472850744E+03 
 -5.3046555633380297E+13   5.6474762035197495E+06   1.2396235199842931E+14 
  2.6216005488877087E+06 
  2.6718518491002527E+02   5.3147635026107300E+06   2.7196561031763974E+02 
 -2.2864480926213803E+14   3.3167429307921994E+07 
  2.3269403118141754E+03 
 -8.7715188193039657E-21  -4.9878742266131203E+03   9.4713598509229241E-21 
 -1.8471748626325279E+04  -2.3519394851098701E-20 
  9.6566139332990221E-04   1.3909610826709259E+03   2.1853773323527999E+07 
  1.5331074559221399E+03 
 -2.1808848585740089E-20   3.1057268643053249E+03   3.7278682108060298E-20 
 -2.0310529622961200E-11   1.0305755608885385E+04 
 -8.9505144382507511E-21 
 -4.8762035990897920E+12  -4.0997644971774919E-06   2.5424824874390378E+14 
  2.1628202003635411E-02 
 -4.6587055074670576E+02  -1.7565621674293648E+07   7.1843228862468408E+01 
 -4.2271049345184758E+13  -8.7766933620526101E+06 
 -3.2986877839425318E+01 
  7.6252478992795931E-20  -1.2466556654544547E+03  -2.5174400378349095E-20 
  2.8416599702083570E-04  -1.9154512529101219E+03 
 -1.9936413271488153E-20 
  4.6158062376628331E+14   3.4364174676117807E-05 
 -1.0650959075064748E+04 
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  3.1720553095891058E-20 
 
  1.8973425066744137E+04   4.2115241483250617E+02   3.9557897832387600E+04 
 -7.0641674003446568E+01   4.4274644241636135E+06  -7.1143957758833255E+02 
 -2.0824039714880916E-07   1.6825819800631685E+01  -1.2731368693660870E-05 
 -2.8124366387611881E+03  -1.5892929333682911E-05 
 -3.9557897823283631E+04  -3.3532103915865241E+02  -1.5909828402803519E+06 
 -2.1642666489692095E+02 
 -6.0472278161206162E-07   2.7152383821418761E+02  -2.4084033378723997E-06 
 -4.4274644240911920E+06   4.6508594790141406E+03 
  2.5647837274485482E-05 
 -2.9912476547413984E-07  -2.8249166187952214E-05   1.0292455906654728E-07 
 -3.5231470518759522E-04  -8.7490778510890249E-09 
  1.4163624786401631E+03  -1.9655868729526180E-04   1.5308157826175279E+03 
 -6.5792163383981958E-05 
  9.3066613443548705E-08  -1.5019047288532478E-04  -4.0111317045621314E-07 
  5.1558373448282000E+03  -1.3664865246287847E-03 
  4.0496902706244058E-08 
 -3.9663562468470895E+05  -5.9685678450549074E+02   7.7914143599530794E+06 
 -5.7557961354558199E+02 
  5.4202190369701875E-05   7.3487337439697683E+01   2.5955019383738783E-05 
 -7.7914143600256555E+06  -6.3474276086952770E+01 
  2.3391211419253408E-05 
 -1.9031875125379947E-07  -2.6174919809461138E-05   8.0783470191025928E-08 
 -9.5828663281146646E+02   2.3662538942148531E-04 
  1.9761546999480514E-07 
 -8.6557049903377537E+06  -1.0656428171785734E+04 
  9.0133146663651112E-04 
 -1.3888406170773245E-07 
 
 

Table 15. Output file nlcfS.dat (N = 6) 
 
 

   6 
 1.000000000E+00  5.768477135E-23 -2.311896335E-11 -2.711757665E-23  2.772249390E-13 -4.488264566E-23 
 5.768477135E-23  7.236205255E-11  3.472395315E-22 -7.886050120E-12  5.270014554E-25 -8.458802792E-12 
-2.311880325E-11  3.472395315E-22  1.000000000E+00 -5.047741010E-23 -8.853099121E-13 -8.763632749E-23 
-2.711757665E-23 -7.886050120E-12 -5.047741010E-23  6.419804915E-12 -7.647959044E-26  1.192653529E-12 
 2.772010611E-13  5.270014554E-25 -8.853230242E-13 -7.647959044E-26  1.000000000E+00  2.110394293E-26 
-4.488264566E-23 -8.458802792E-12 -8.763632749E-23  1.192653529E-12  2.110394293E-26  3.696911872E-12 

 
 

Table 16. Output file REDMASS.dat (N = 6) 
 
 
 

5.331973717E+00  6.656517013E-11 -1.226346499E-05 -8.058884874E-12  2.349965392E-05 -7.979658485E-12 
 6.656517013E-11  1.012058005E-07 -1.000317273E-09 -6.669707065E-09 -2.879309771E-09 -9.502276209E-09 
-1.226346499E-05 -1.000317273E-09  1.711226763E+01  8.156907848E-10  3.192062830E-05  1.515619648E-10 
-8.058884874E-12 -6.669707065E-09  8.156907848E-10  1.702087731E-08  3.822839856E-10  1.526371284E-09 
 2.349965392E-05 -2.879309771E-09  3.192062830E-05  3.822839856E-10  2.395532897E+01  1.607491161E-09 
-7.979658485E-12 -9.502276209E-09  1.515619648E-10  1.526371284E-09  1.607491161E-09  9.336008746E-09 

 
Table 17. Output file REDCM.dat (N = 6) 
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   1       1       1       1 
                    1.333333E-03 
                    1.287609E+09   -3.517979E+06   -6.371138E+09   -2.195077E+06    8.189134E+09   -1.846588E+06 
                   -1.010000E+10   -1.466667E+04    1.150349E+11   -3.800000E+04   -1.387435E+11   -2.000000E+04 
                   -6.666667E+01   -5.466667E+04   -1.333333E+01   -1.380000E+05   -3.333333E+01 
                   -3.275500E+11   -1.880000E+05    7.900015E+11    3.000000E+04 
                    6.666667E+01   -7.133333E+04   -6.666667E+01 
                   -4.763467E+11   -2.533333E+05 
                   -1.333333E+01 
       1       1       1       2 
                    1.333333E-03 
                    1.067009E+09   -3.160254E+06   -5.823949E+09   -2.287069E+06    5.687341E+09   -1.408392E+06 
                   -2.112600E+10    3.866667E+04    2.405459E+11    2.200000E+04   -2.900808E+11    7.000000E+04 
                    0.000000E+00   -1.113333E+05   -8.000000E+01    2.200000E+04    1.000000E+02 
                   -6.848700E+11   -6.800000E+04    1.651824E+12   -2.300000E+05 
                    6.666667E+01   -1.346667E+05   -6.666667E+01 
                   -9.960033E+11    2.033333E+05 
                   -1.333333E+01 

.  .   .  .  .  .  . 
 . 
.  .   .  .  .  .  . 
 . 
.  .   .  .  .  .  . 
 . 

 
 

Table 18. Output file nlcfsig.out (N = 6) 
 
 

 -2.172196E-05 -4.466398E-04  8.323139E-06 -2.031729E-04 -2.634866E-06  1.133293E-04 
 -8.141535E-05 -3.828326E-03 -1.621303E-06  5.846920E-04 -3.036293E-06 -2.170996E-05 
 -1.161589E-04 -8.040228E-03  5.741441E-06  1.584445E-03 -6.951345E-07 -5.058802E-04 
  1.114526E-05 -4.167306E-05  1.449594E-06 -1.842968E-05 -5.792243E-07 -3.692825E-05 
  2.039739E-05 -1.936618E-04 -2.018316E-07  2.757911E-05 -1.191463E-06 -1.074792E-04 
  6.584959E-05 -2.064157E-03  4.257970E-06  3.407142E-05 -2.927137E-07 -5.036310E-04 
  2.772608E-06  1.433100E-05  2.165428E-06 -3.561814E-05 -1.692595E-06 -4.618250E-05 
 -6.276848E-05 -1.747560E-03 -3.758963E-06  1.061624E-05  1.873097E-06 -7.421226E-04 
 -1.590590E-05 -2.084104E-04  3.564380E-07  5.136831E-05 -3.484931E-06 -7.498427E-06 
 -5.012125E-05 -1.511082E-03 -1.385438E-06  2.284601E-04 -3.063058E-06  7.051507E-05 
 -2.411767E-05 -5.900594E-04  1.058723E-05 -3.744153E-04 -3.979972E-06  1.406722E-04 
 -8.892171E-06 -4.753164E-05 -2.112668E-06 -2.555629E-05 -2.540390E-06 -3.097287E-05 
 -9.795492E-05 -6.324519E-03  1.455031E-05  7.210527E-04  2.714470E-07 -1.854788E-04 
  4.066865E-05  4.710535E-04  2.692888E-05 -5.110259E-03  2.951548E-06 -5.968385E-04 
  9.847240E-06 -5.720819E-05  2.598068E-06 -4.038214E-05  3.326697E-06 -6.393621E-05 
  7.954694E-05 -3.063959E-03  7.979397E-06 -2.621150E-04  2.195999E-06 -3.839027E-04 
 -4.139535E-04 -1.191831E-01  3.874771E-05  2.365478E-02 -2.170454E-05  1.252556E-02 
 -3.946480E-04 -1.048481E-01  5.415519E-06  2.193584E-02 -3.444770E-05  1.131721E-02 
 -1.940008E-04 -2.395080E-02  5.159949E-05 -5.897312E-03  1.241031E-05 -7.063836E-03 
  4.296829E-04 -1.385196E-01 -5.556918E-05  2.393568E-02  3.173832E-05  2.112512E-02 
  3.062944E-04 -6.275869E-02 -4.685511E-05  6.876266E-03  6.032132E-07 -4.730322E-04 
  2.036727E-04 -2.294935E-02 -2.739766E-05  2.288048E-03 -1.336136E-05 -9.893842E-03 
 -2.884378E-04 -5.246168E-02  2.791734E-06  1.029318E-02 -1.633524E-05  3.371720E-03 
  3.647681E-04 -8.055417E-02 -3.531099E-05  1.390135E-02 -4.998090E-06 -9.401646E-03 
  9.676533E-05 -6.613273E-03 -1.474683E-05  8.163593E-04  2.803002E-06  5.336958E-04 
 -3.643675E-04 -9.206849E-02  3.407541E-05  1.823862E-02 -1.858130E-05  9.414087E-03 
  2.988312E-04 -6.507979E-02 -2.508159E-05  1.391448E-02  2.519783E-05  9.221902E-03 
  3.930438E-05 -1.194066E-03  2.721148E-06  1.814644E-04  1.032330E-05 -3.201631E-04 
  2.568110E-04 -3.807297E-02 -1.001837E-05  7.327659E-03 -2.013611E-07 -3.909207E-03 
 -2.784079E-05 -6.140788E-04  5.732824E-06  2.525510E-05 -1.939770E-06  1.093321E-04 
.   .  .   .  .  . 

 
Table 19. Output file displ.out (N = 6) 
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           1      2.1884478096111814E+05 
           2      5.2831875733370371E+06 
           3      6.4911802976146713E+06 
           4     -2.6663627553476905E+06 
           5     -2.1029852955631576E+06 
           6     -3.7225333006151551E+06 
           7      4.5747901672517946E+06 
           8      5.4655668206529180E+06 
           9     -2.9926618582684314E+06 
          10      6.4751217939703325E+04 
          11     -1.2410712954796604E+06 
          12     -1.5900541799111836E+05 
          13      4.1075973339720694E+06 
          14     -4.3986905593915507E+06 
          15      3.5489243835512633E+06 
          16      9.3297288417093933E+05 
          17      2.0716987205355708E+07 
          18      1.1303366173121907E+07 
          19      1.2706484832463996E+06 
          20      1.9382636063034073E+07 
          21      2.2772729257566463E+06 
          22      1.1971869941410248E+06 
          23     -3.0906303119268687E+06 
          24     -9.8573569422800597E+06 
          25      1.8180547284970365E+07 
          26     -7.9110802265779208E+05 
          27     -6.1596198575313762E+06 
          28     -4.0797030780867683E+06 
          29     -6.0018814285831973E+06 
          30     -4.8979544968135301E+06 
  .   . 

  .   . 

 

Table 20. Output file stress.out 

 
 0.306923809E+06       1       3 
 0.288577428E+06       1      15 
 0.161057672E+06       4       6 
 0.168612263E+08       6       6 
 0.767839769E+07       6      14 
 0.372190786E+05       7       9 
 0.963381506E+06       9      11 
 0.943549492E+06      12      14 

 

Table 21. Output file range.dat 
 
 
   0.272403329365595 
 

Table 22. Output file damage.dat 
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4. VALIDATION 

 
The validation efforts have been carried out on three fully clamped rectangular panels, 

two of them isotropic and one composite. The analysis of the isotropic panels will be 

described first. These two panels had dimensions 0.3556m x 0.254m x 0.00102m (Panel 

1) and 0.3048m x 0.254mx 0.00102m (Panel 2), both were discretized with 14x10 

CQUAD4 elements, and they were subjected to a uniform pressure, static or dynamic. 

The material properties were assumed to be E = 7.3 1010 Pa, ν = 0.31623, ρ = 2763 

kg/m3, α = 2.5 105 (°K)-1. Rayleigh damping was assumed to be present on panel 1 so 

that its finite element damping matrix was expressed as 

 KMC CC β+α=   (27) 

where M and K are the corresponding (finite element) mass and stiffness matrices. The 

values of the coefficients Cα  and Cβ  were selected to achieve damping ratios of 

approximately 1% on all modes retained in the reduced order model of panel 1. The 

values of these coefficients and the modes retained in the reduced order models and their 

frequencies and damping ratios are given in Table 23 for the two panels. Finally, both 

nonheated and heated panels have been considered for the validation which is discussed 

below. 

 
Panel 1 Panel 2 

Cα  = 12.838; Cβ = 2.061 10-6  
Mode 
Numb. 

Mode 
Type 

Frequency 
(Hz) 

Damping
Ratio 

Mode 
Numb.

Mode 
Type 

Frequency 
(Hz) 

1 (0,0) 110.2747 0.00998 1 (0,0) 121.2299 
4 (2,0) 300.745 0.00534 5 (2,0) 389.0692 
8 (0,2) 536.2466 0.00538 7 (0,2) 544.6526 
11 (2,2) 712.1201 0.00605 11 (4,0) 788.8278 
12 (4,0) 717.5684 0.00607 13 (0,4) 956.5229 
18 (4,2) 1114.488 0.00813 21 (2,2) 1480.949 
22 (6,0) 1434.047 0.01000 
24 (0,4) 1466.896 0.01019 

 

 
Table 23. Modal properties of the validation panels 1 and 2. 
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4.1 Consistency 

 
Prior to the assessment of the reduced order modeling for the prediction of the 

displacement and stress fields, it was deemed noteworthy to confirm its general 

consistency/stability, more specifically to investigate the selection of the scaling factors q 

and q̂ , see Eq. (13), (15), and (19). To this end, a series of computations were performed 

with values of these coefficients ranging from 610−  to 110− , i.e. from a thousand times 

smaller to a hundred times larger than the panel thickness, on panel 2 first in the absence 

of thermal effects. It was found that the resulting reduced order coefficients (stiffnesses 

and stresses) were very stable, keeping at least 5 significant digits say for the dominant 

terms, except for very small and very large values of the scaling factors. Accordingly, it 

seems recommended to select q and q̂  to be of the order of the panel thickness. Further, 

it was noticed that the terms )2(
iiiK  and )0(S , although not quite zero, were very small in 

comparison with the remaining stiffness and stress coefficients.  

 

Similar computations performed at different nonzero temperatures demonstrated that only 

the first terms, i.e. )1(
ijK  and )0(S , were dependent on temperature. In fact, the linear 

stiffness coefficients )1(
ijK  appeared to vary almost exactly linearly with temperature. All 

of these results, which are perfectly in agreement with the von Karman strains and with 

approximate analyses (e.g. Lee, 1993, 1997, 2001, 2002), support the validity of the 

reduced order modeling scheme. 

 

4.2 Static Validations 

 
The validation of the reduced order modeling strategy was achieved first on a series of 

static problems and with increasing number of modes. Shown in Fig. 3(a) are the 

transverse displacements of the center of the panel 2 predicted by the MSC.NASTRAN 

solution (SOL 106), the corresponding single-mode (with dual) reduced order model 

obtained by selecting the lowest transverse mode with the load factor p = 60 Pa, and the 
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approximations derived by Lee (1993) and Lee (2002). The reduced order displacement 

was obtained, as in all static validations, by marching in time the differential equations 

for the transverse and dual degrees of freedom from zero initial conditions with a step 

loading applied at t = 0. The tolerance was set at 5 10-8 for this and all ensuing, static or 

dynamic, validations analyses. Note from Fig. 3 the excellent agreement of the 

displacements obtained by including only the first transverse mode and its dual. 
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Figure 3. Static response of the panel to a uniform pressure. Center displacement as a 

function of pressure 
 
 

Turning now to the stresses, it is first noted that the stresses are not independent of the 

displacements: they are determined through the memoryless quadratic transformation of 

Eq. (2) or (5). The stresses predicted by the reduced order modeling thus result from two 

cascaded approximations: the modeling of the displacement field and the approximation 

of the quadratic transformation. Having established the reliability of the displacement 

field obtained from the reduced order models, see Fig. 3, it remains to assess the accuracy 

of the estimated quadratic transformation. To this end, the stress in the x-direction at the 

center of the bottom of the panel (largest normal stress at that point) was analyzed as a 
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function of the displacement of that point. Shown in Fig. 4 are the corresponding plots for 

the MSC.NASTRAN data, the one mode reduced order model, and the two 

approximations of Lee (1993) and Lee (2002). Surprisingly, it is found that these latter 

approximations substantially overpredict the stress while the reduced order model 

provides a much closer fit of the MSC.NASTRAN data over that range. It should be 

noted that both the reduced order modeling and the approximations of Lee are perfect 

parabolas but, interestingly, the MSC.NASTRAN data is also very close to a quadratic 

polynomial ( 2R =0.999977), see Table 24. Note that the constant stress coefficient )0(S  

was found to be very close to zero in all cases as can be expected from the lack of 

temperature. Further, the linear coefficients )1(
iS  were all found to exceed their 

MSC.NASTRAN counterpart by 7% to 19% but a much larger scatter exists in 

connection with the quadratic terms: the reduced order model coefficient exceeds the 

MSC.NASTRAN value by 52% but the approximations of Lee (1993 and 2002) are 

larger, by a factor of 2.5. 
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Figure 4. Static response of the panel to a uniform pressure. Stress xxσ  at center as a 
function of its transverse displacement 
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Solution )0(S  )1(
iS  )2(

ijS  

MSC.NASTRAN - 2.241 410 1.123 1010  1.513 1210  
Harmonic approximate modes (Lee, 1993) 4.112 210− 1.275 1010  3.705 1210  
Clamped beam approximate modes (Lee, 2002) - 7.118 210− 1.339 1010  3.704 1210  
Current Reduced Order Modeling ELSTEP/FAT 5.180 110 1.201 1010  2.299 1210  

 

Table 24. Stress coefficients obtained from MSC.NASTRAN, the approximations of Lee 
(1993) and Lee (2002), and the present one-mode reduced order model. 

 

In regards to these last results, it should be noted that the stresses are directly related to 

the curvatures of the transverse displacement field, not the displacements themselves. 

Thus, a good matching of the deformed shapes, see Fig. 3, does not guarantee an equally 

good approximation of the stresses. This observation, and the findings of Fig. 4, are in 

fact neither specific to plates nor to nonlinearity, a similar argument can be developed in 

connection with linear beams where an overprediction of the stress at the middle by 

23.4% and 7% using the bases of Lee (1993) and Lee (2002), respectively, is obtained. 

 

The effect of a higher number of modes was considered next. In the linear case, it can be 

demonstrated that the convergence of the displacements and stresses is achieved in an 

oscillatory fashion, i.e. by alternatively overshooting the exact solution. Further, modes 5 

(the (2,0) mode) and 7 (the (0,2) mode) will provide contributions that are opposite in 

sign to both the one of mode 1 (the (0,0) mode) and to those of the next three modes (the 

modes 11, 13, and 21, i.e. (4,0), (0,4), and (2,2)). Accordingly, it is expected that the 

modes 1 and 5, 1 and 7, and especially 1, 5, and 7 may/will lead to larger negative errors 

than obtained for mode 1 alone. This result is clearly seen in Fig. 5 for both 

displacements and stresses. Note however the overall small errors in both displacement 

and stress estimates obtained with 6 modes (and 6 duals) strongly suggesting that indeed 

convergence is taking place for the prediction of both displacement and stress fields. 

 

Having established the excellent behavior of the reduced order modeling based on the 

transverse modes and their duals, it is of interest to assess the need for the dual modes in 

the formulation. To this end, the computations of Fig. 5 were redone but keeping only the 
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transverse mode in the reduced order model. This effort led to the results and 

comparisons of Fig. 6 which clearly demonstrate the need to incorporate the duals. 

 

The panel 2 was next assumed to be subjected, in addition to the uniform loading, to the 

effects of a uniform temperature equal to 1.8 times the buckling temperature. The 

determination of the reduced order model was repeated with load factors p = 60 Pa (as in 

the nonheated case) and p = 1 Pa and the corresponding displacement and stress at the 

middle of the panels were evaluated and compared to MSC.NASTRAN results, see Fig. 7 

and 8. These results clearly demonstrate that the reduced order model obtained with the 

load factor p = 1 Pa produces a much closer response than the one with p = 60 Pa. In fact, 

both center displacement and stress obtained with 6 modes (and their duals) and p = 1 Pa 

are extremely close to their MSC.NASTRAN counterparts over the entire range of 

pressure considered. Note further that the p = 1 Pa models match quite accurately the 

behavior at the lowest external pressure, i.e. see Fig. 7 and 8 for 400 Pa. In searching for 

an explanation for this p-dependent behavior, it was noted that the center displacement 

obtained in the computations of the dual modes with p = 1 Pa was of the order of the 

plate thickness while it was 10 times as large for p = 60 Pa. Noting further that the 

transverse center displacement corresponding to an external pressure in the range of 0 to 

7200 Pa is of the order of 1-2.5 plate thicknesses, it is suggested that the improved results 

obtained with p = 1 Pa (as compared to p = 60 Pa) arise from the close matching of the 

transverse  deformation  obtained  during  the  computation  of  the  dual modes and those 

actually produced by the external loading. This matching assumption serves as the 

current recommended selection criteria for the value of p. 
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Figure 5. Reduced order modeling errors in the static response of the panel to a uniform 
pressure for different combinations of modes. (a) Center displacement as a function of 

pressure and (b) stress xxσ  at center as a function of pressure 
 

159



39 

-12

-8

-4

0

4

0 500 1000 1500 2000 2500
Pressure (Pa)

Er
ro

r (
%

)

1 1,5 1,7 1,5,7
 1+D 1,5 +D 1,7 +D 1,5,7 +D

 
(a) 

-50

-40

-30

-20

-10

0

10

20

0 500 1000 1500 2000 2500
Pressure (Pa)

Er
ro

r (
%

)

1 1, 5 1,7 1, 5, 7
 1+D 1,5 +D 1, 7 +D 1, 5, 7 +D  

(b) 
 

Figure 6. Reduced order modeling errors in the static response of panel 2 to a uniform 
pressure for different number of modes with (“+D”) and without duals. (a) Center 

displacement and (b) stress xxσ  at center as functions of pressure. 
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Figure 7. Reduced order modeling errors in the static response (center displacement) of 

panel 2 to a uniform pressure for different number of modes and different load factors p as 
function of pressure. 
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Figure 8. Reduced order modeling errors in the static response (tress xxσ  at center) of 

panel 2 to a uniform pressure for different number of modes and different load factors p as 
function of pressure. 
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While excellent results had been obtained with p = 60 Pa for the unbuckled panel, see 

Fig. 5, it was questioned whether further improvements can be obtained by changing, 

notably reducing, the value of p as noted above in connection with the buckled panel. In 

fact, a series of tests have shown that the static response of the unbuckled panel is quite 

insensitive to the selection of p. A slight sensitivity was observed in the dynamic 

validations to be discussed below where slightly improved results were obtained with p = 

1 Pa as compared to p = 60 Pa. 

 

4.3 Dynamic Validations 

 
Having established the reliability of the reduced order modeling in static cases, it was 

desired next to validate its usefulness in dynamic problems. A straightforward validation 

approach in which time histories of  the  panel response to a specific loading would be 

computed by MSC.NASTRAN and the reduced order model and then compared, proved 

to be computationally expensive for both MSC.NASTRAN (as expected) but also, more 

surprisingly, for the reduced order model. In this regard, it was found that the natural 

frequencies associated with the dual modes are much higher than those corresponding to 

the transverse mode. Given the in-plane nature of the dual modes, this observation is not 

unexpected but it implies a substantial increase of the computational effort associated 

with the numerical integration of the reduced order model equations of motion by 

requiring an appropriately small time step to track the dual mode dynamics. In many 

cases, it may be expected that the loading on the panel will not exhibit any energy at such 

high frequencies and thus it is acceptable to proceed with a static condensation of the 

dual modes. That is, their mass and damping coefficients are ignored and the values of 

the dual mode coordinates are evaluated at each time step from their transverse 

counterparts to satisfy 0FK NL = . In all examples considered below, it was found that 

the magnitude of the in-plane displacements is small enough to remain in the linear 

range. Thus, the nonlinear algebraic equations 0FK NL =  can be linearized with respect 

to the dual modes only (all nonlinear terms in the transverse coordinates were left 

unchanged) to provide an efficient computation of their generalized coordinates. 
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The dynamic validation process was then achieved in two steps. First, the static 

condensation procedure described above was evaluated and then, in the second phase, a 

comparison on the response of the panel to a random loading was performed. For the 

static condensation validation, the reduced order model of panel 2 was subjected to a 

white noise excitation of overall sound pressure level (OASPL) equal to 153 dB in the 

range of 0-3667 Hz and a 6 transverse mode model (with associated duals) was 

considered as before. To better highlight any potential effect of every mode, a damping 

ratio of 1% was assumed for all modes and the reduced order differential equations were 

integrated with a time step of 1.363 10-4s. The full solution of the reduced order model 

equations is compared to its statically condensed counterpart in Fig. 9 (for the 

displacement at the middle of the panel) and Fig. 10 (for the corresponding stress). 

Clearly, the spectra of the full and condensed solutions are very close to each other 

through the entire frequency range of the excitation/response. 

 

On the basis of the excellent matching of Fig. 9 and 10, the static condensation was relied 

upon for the dynamic validation conducted on Panel 1. The linear response of this panel 

was first explored to establish a firm ground for the comparison of the nonlinear 

responses. Shown in Fig. 11 are the power spectral densities of the displacement of the 

center of the panel estimated from time histories of its linear response when subjected to 

a 97dB white noise excitation in the range of 0-2083 Hz with the time step of 3 510− s for 

both MSC.NASTRAN and ELSTEP/FAT. Clearly, the agreement between the 

MSC.NASTRAN and reduced order model results is excellent, as expected. 
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Figure 9. Comparison of power spectra of the displacement at the center of the panel for the 

full and statically condensed models. 
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Figure 10. Comparison of power spectra of the stress xxσ  at the center of the panel for the 

full and statically condensed models. 
 

 

A white noise excitation of sound pressure level 147dB in the same frequency range was 

generated to assess the dynamic nonlinear prediction capabilities of the proposed reduced 
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order. A series of MSC.NASTRAN nonlinear solutions were performed with  the  

standard tolerance and maximum time steps  DT1 = 2.4 410− s.,  DT2 = 4 510− s.,  and 

DT3 = 2 510− s. The  corresponding  power spectral densities of the displacement at the  
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Figure 11. Comparison of power spectra of the displacement at the center of the panel for 

MSC.NASTRAN and the reduced order model - linear system 
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Figure 12. Comparison of power spectra of the displacement at the center of the panel for 

MSC.NASTRAN and the reduced order model - nonlinear system - 147dB; p = 60 Pa. 
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center of the panel are shown in Fig. 12 together with the 16-mode (8 transverse and 8 

duals) reduced order model prediction obtained with the load factor p = 60 Pa and the 

time step of 2 510− s. An excellent matching of the dominant component of the response, 

i.e. the first peak, is achieved. Further, the predicted levels of the next three peaks is also 

very good although the frequency and width of the peaks do not coincide as well. 

Overall, a good matching at least is achieved. A similar perspective can be obtained from 

the power spectral densities of the stress xxσ , see Fig. 13. 
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Figure 13. Comparison of power spectra of the stress xxσ  at the center of the panel for 
MSC.NASTRAN and the reduced order model - nonlinear system - 147dB; p = 60 Pa. 

 

 

4.4 In-Plane Motion Modeling 
 
The prediction of the panel response, even the transverse displacement field but 

especially the stresses (and thus the damage accumulated and fatigue life), necessitates a 

good modeling of the in-plane behavior of the panel. The reliability of the reduced order 

model in predicting the in-plane response was assessed on panel 1 at both 97dB and 

147dB in the same conditions as above. By symmetry, the center of the panel does not 

move and thus a point close to it was selected for analysis, specifically the point of 

coordinates x = 0.1306m, y = 0.127m for the rectangular plate x ∈ [0, 0.3048m] and y ∈ 
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[0, 0.254m]. Given the location of the point considered on an axis of symmetry of the 

panel, it only experiences an x displacement. Then, shown on Fig. 14 is the power 

spectral density of this x-displacement for the first 3, 5, and 8 modes (with their duals) 

with p = 60 Pa for a 97 dB OASPL white noise excitation. Clearly, the ELSTEP/FAT 

result with 8 modes and 8 duals provides a close qualitative model of the in-plane 

displacements and represents a good quantitative approximation for many modes - the 

largest difference appears to be on the first peak at 220 Hz where the peak magnitude 

may be off by as much as a factor of 8. 
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Figure 14. In-plane x-displacement spectrum for aluminum panel, SPL = 97dB, computed 

from MSC.NASTRAN and ELSTEP/FAT with 3, 5, and 8 modes and duals, p = 60 Pa. 
 

 

In an effort to improve the quality of this prediction, the modeling process was repeated 

with the load factor p = 1 Pa and with 8 modes and their duals. Shown in Fig. 15 are the 

displacement spectra obtained from MSC.NASTRAN and the 8-modes (+ duals) reduced 

order modes with both p = 60 Pa and p = 1 Pa. It is seen that the latter load amplification 

factor leads to a very close match of the peak values of the spectrum, especially on the 
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first and dominant mode, thereby providing an excellent modeling of the  in-plane 

dynamics of the panel. These computations were also repeated at 147dB and shown in 

Fig. 16 is a comparison of the MSC.NASTRAN and ELSTEP results which demonstrate 

a very good overall match of the spectral features. 
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Figure 15. In-plane x-displacement spectrum for aluminum panel, SPL = 97dB, computed 
from MSC.NASTRAN and ELSTEP/FAT with 8 modes and duals, p = 60Pa and p = 1Pa. 
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Figure 16. In-plane x-displacement spectrum for aluminum panel, SPL = 147dB, computed 

from MSC.NASTRAN and ELSTEP/FAT with 8 modes and duals, p = 60 Pa. 
 

 

4.5 Composite Panel 

 
To complete the validation of ELSTEP/FAT, a fully clamped rectangular composite 

panel was considered that is formed of 6 plies of AS4/3501-6 and has dimensions 

0.3429m x 0.1905m. The 6 plies had orientations (0º,90º,0º) and the  common thickness 

of 0.00013716m. The material properties of AS4/3501-6 were found to be 1E =1.448 1011 

Pa; 2E = 3E = 9.655 109 Pa; 12G = 13G = 5.862 109 Pa; 23G = 4.414 109 Pa; 

12υ = 13υ =0.29; 23υ =0.55; and ρ =1591 kg/m3. The panel was modeled with 18x10 

CQUAD4 elements and Rayleigh damping was assumed. The modal properties of this 

panel that are pertinent to the reduced order modeling are presented in Table 25. 
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Cα  = 9.52; Cβ = 1.9 10-6 

Mode 

Numb. 

Mode 

Type 

Frequency 

(Hz) 

Damping

Ratio 

1 (0,0) 141.9646 0.00618 

4 (2,0) 365.2717 0.00425 

9 (0,2) 731.5963 0.00540 

11 (2,2) 848.3268 0.00596 

12 (4,0) 877.1326 0.00610 

15 (4,2) 1227.861 0.00795 
 

Table 25. Modal properties of the composite validation panel. 

 
This composite panel was subjected to white noise excitation of 135dB and 140dB in the 

frequency range 0-2083 Hz and the displacement of the center point was determined 

through a full MSC.NASTRAN solution with maximum time step of 2 10-5s as well as by 

application of the reduce order modeling strategy with the 6 modes of Table 25, p = 1 Pa, 

and the time step of 2 10-5s. The comparisons of the power spectral densities of the center 

point displacement seen in Fig. 17 demonstrate again that the reduced order modeling 

strategy provides a reliable approximation of the full finite elements in a broad range of 

panel applications. A comparison of the stress power spectral density is not possible as 

the current version of MSC.NASTRAN does not allow to output the stress time history 

for composite materials undergoing large deformations. 

170



50 

1.E-16

1.E-15

1.E-14

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Frequency (Hz)

Po
w

er
 S

pe
ct

ra
l D

en
si

ty
 (m

^2
)

NASTRAN ELSTEP

 
(a) 

 

1.E-15

1.E-14

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Frequency (Hz)

Po
w

er
 S

pe
ct

ra
l D

en
si

ty
 (m

^2
)

NASTRAN ELSTEP

 
(b) 

 
Figure 17. Comparison of power spectra of the displacement at the center of the panel for 

MSC.NASTRAN and the reduced order model,  p = 1 Pa, (a) 135dB, (b) 140dB. 
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5. DAMAGE ACCUMULATION RULES 
 
Several damage accumulation rules are available in ELSTEP/FAT to provide an estimate 

of the fatigue life of the panel under the acoustic excitation. The rule is selected 

according to the value of option in the header file rainflow.h and its parameters are read 

from an input file the name of which matches the rule name. The accumulated damage is 

estimated by performing first a rainflow analysis on the stress selected according to the 

algorithm of Downing and Socie (1982). The identified ranges are arranged 

chronologically by either their starting point or their endpoint, depending on the value of 

ICYCLE in rainflow.h. The accumulated damage is then estimated by application of the 

accumulation rule to the identified rainflow ranges. In all cases, the S-N curve is assumed 

to be of the form 

 mSKN −=  (28) 

where N denotes the number of cycles until failure when the stress ranges have an 

amplitude S. 

 

(1) Palmgren-Miner Rule: 

Let D correspond to the damage induced by a stress cycle of magnitude S. Then, 

 ( )SN
D 1

= . (29) 

(2) Marko-Starkey Rule (see Collins, 1993) 

Let D correspond to the damage induced by a stress cycle of magnitude S and let n the 

number of such consecutive cycles. Then, 

 ( )

( )Sm

SN
nD ⎥

⎦

⎤
⎢
⎣

⎡
=  (30) 

where m(S) is an exponent depending on S. In the present implementation, the function 

m(S) is assumed to be piecewise constant with values provided in Marko_Starkey.dat.  

 

(3) Marin Rule (see Collins, 1993) 

Let D correspond to the damage induced by a stress cycle of magnitude S and let n the 

number of such consecutive cycles. Then, 
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where q is an fixed exponent and maxS  is the largest stress range. 

 

(4) Schaff-Davidson Rule (Schaff and Davidson, 1997, Sarkani et al., 2001) 

Let 1−kD  and kD  be the damage accumulated after the k-1th and kth cycle and 1−kS  and 

kS  the ranges of those cycles. Further, let 0R  be the static strength at zero fatigue 

damage (i.e. of the virgin material). Then, 
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In the present implementation, the function C(S) is assumed to be piecewise constant with 

values provided in Schaff_Davidson.dat. 

 

(5) Hashin Rule (Hashin, 1985, Sarkani et al., 2001) 

Let 1−kD  and kD  be the damage accumulated after the k-1th and kth cycle and kS  the 

ranges of the latter cycle. Further, let 0R  be the static strength at zero fatigue damage (i.e. 

of the virgin material). Then, 
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where A is a material constant (assumed independent of the stress amplitude). 
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6. CURRENT LIMITATIONS 

 
In its current version, the code has a few limitations/specificities: 
 

(1) the maximum number of nodes, elements, etc. is fixed in param.h and paramd.h 

files. 
 

(2) only the cartesian stresses can currently be computed. Neither the von Karman 

nor Tresca stress is available, this issue will be addressed in the next version of 

ELSTEP/FAT. 
 

(3) the current implementation of the dual modes limits the analysis to planar panels 

(plates vs. shells), this issue will be addressed in a future version of 

ELSTEP/FAT. 
 

(4) only CQUAD4 elements have been used so far in the validation process, it is 

unclear at this point if/what changes must be made to vary the element type. 
 

(5) the loading is only in the form of a planar wave but with arbitrary angle of 

incidence. The next version of ELSTEP/FAT will also include a spatially fully 

correlated excitation but non-uniform. 
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